Project description:Soluble guanylyl cyclase (sGC), a key protein in the NO/cGMP signaling pathway, is an obligatory heterodimeric protein composed of one alpha- and one beta-subunit. The alpha(1)/beta(1) sGC heterodimer is the predominant form expressed in various tissues and is regarded as the major isoform mediating NO-dependent effects such as vasodilation. We have identified three new alpha(1) sGC protein variants generated by alternative splicing. The 363 residue N1-alpha(1) sGC splice variant contains the regulatory domain, but lacks the catalytic domain. The shorter N2-alpha(1) sGC maintains 126 N-terminal residues and gains an additional 17 unique residues. The C-alpha(1) sGC variant lacks 240 N-terminal amino acids, but maintains a part of the regulatory domain and the entire catalytic domain. Q-PCR of N1-alpha(1), N2-alpha(1) sGC mRNA levels together with RT-PCR analysis for C-alpha(1) sGC demonstrated that the expression of the alpha(1) sGC splice forms vary in different human tissues indicative of tissue-specific regulation. Functional analysis of the N1-alpha(1) sGC demonstrated that this protein has a dominant-negative effect on the activity of sGC when coexpressed with the alpha(1)/beta(1) heterodimer. The C-alpha(1) sGC variant heterodimerizes with the beta(1) subunit and produces a fully functional NO- and BAY41-2272-sensitive enzyme. We also found that despite identical susceptibility to inhibition by ODQ, intracellular levels of the 54-kDa C-alpha(1) band did not change in response to ODQ treatments, while the level of 83 kDa alpha(1) band was significantly affected by ODQ. These studies suggest that modulation of the level and diversity of splice forms may represent novel mechanisms modulating the function of sGC in different human tissues.
Project description:miR-375 plays an irreplaceable role in regulation of neoplastic progression in gastric cancer. In order to study the mechanism by which miR-375 inhibits the stemness of gastric cancer cell lines, we need to explore the genetic program controlled by miR-375. We used microarrays to detail the global program of gene expression underlying miR-375 up-regulation and identified distinct classes of regulated genes during this process.
Project description:Accumulating evidence indicates that the functional properties of soluble guanylyl cyclase (sGC) are affected not only by the binding of NO but also by the NO:sGC ratio and a number of cellular factors, including GTP. In this study, we monitored the time-resolved transformations of sGC and sGC-NO complexes generated with stoichiometric or excess NO in the presence and absence of GTP. We demonstrate that the initial five-coordinate sGC-NO complex is highly activated by stoichiometric NO but is unstable and transforms into a five-coordinate sGC-2 state. This sGC-2 rebinds NO to form a low activity sGC-NO complex. The stability of the initial complex is greatly enhanced by GTP binding, binding of an additional NO molecule, or substitution of ?His-107. We propose that the transient nature of the sGC-NO complex, the formation of a desensitized sGC-2 state, and its transformation into a low activity sGC-NO adduct require ?His-107. We conclude that conformational changes leading to sGC desensitization may be prevented by GTP binding to the catalytic site or by binding of an additional NO molecule to the proximal side of the heme. The implications of these observations for cellular NO/cGMP signaling and the process of rapid desensitization of sGC are discussed in the context of the proposed model of sGC/NO interactions and dynamic transformations.
Project description:Tissue injury and infection trigger innate immune responses. However, dysregulation may result in chronic inflammation and is commonly treated with corticosteroids and non-steroidal anti-inflammatory drugs. Unfortunately, long-term administration of both therapeutic classes can cause unwanted side effects. To identify alternative immune-modulatory compounds we have previously established a novel screening method using zebrafish larvae. Using this method we here present results of an in vivo high-content drug-repurposing screen, identifying 63 potent anti-inflammatory drugs that are in clinical use for other indications. Our approach reveals a novel pro-inflammatory role of nitric oxide. Nitric oxide affects leukocyte recruitment upon peripheral sensory nervous system or epithelial injury in zebrafish larvae both via soluble guanylate cyclase and in a soluble guanylate cyclase -independent manner through protein S-nitrosylation. Together, we show that our screening method can help to identify novel immune-modulatory activities and provide new mechanistic insights into the regulation of inflammatory processes.
Project description:Soluble guanylyl cyclase (sGC) is the main receptor for nitric oxide (NO) and a central component of the NO-cGMP pathway, critical to cardiovascular function. NO binding to the N-terminal sensor domain in sGC enhances the cyclase activity of the C-terminal catalytic domain. Our understanding of the structural elements regulating this signaling cascade is limited, hindering structure-based drug design efforts that target sGC to improve the management of cardiovascular diseases. Conformational changes are thought to propagate the NO-binding signal throughout the entire sGC heterodimer, via its coiled-coil domain, to reorient the catalytic domain into an active conformation. To identify the structural elements involved in this signal transduction cascade, here we optimized a cGMP-based luciferase assay that reports on heterologous sGC activity in Escherichia coli and identified several mutations that activate sGC. These mutations resided in the dorsal flaps, dimer interface, and GTP-binding regions of the catalytic domain. Combinations of mutations from these different elements synergized, resulting in even greater activity and indicating a complex cross-talk among these regions. Molecular dynamics simulations further revealed conformational changes underlying the functional impact of these mutations. We propose that the interfacial residues play a central role in the sGC activation mechanism by coupling the coiled-coil domain to the active site via a series of hot spots. Our results provide new mechanistic insights not only into the molecular pathway for sGC activation but also for other members of the larger nucleotidyl cyclase family.
Project description:Heterodimeric alphabeta soluble guanylyl cyclase (sGC) is a recognized receptor for nitric oxide (NO) and mediates many of its physiological functions. Although it has been clear that the heme moiety coordinated by His-105 of the beta subunit is crucial for mediating the activation of the enzyme by NO, it is not understood whether the heme moiety plays any role in the function of the enzyme in the absence of NO. Here we analyze the effects of biochemical and genetic removal of heme and its reconstitution on the activity of the enzyme. Detergent-induced loss of heme from the wild-type alphabeta enzyme resulted in several-fold activation of the enzyme. This activation was inhibited after hemin reconstitution. A heme-deficient mutant alphabetaCys-105 with Cys substituted for His-105 was constitutively active with specific activity approaching the activity of the wild-type enzyme activated by NO. However, reconstitution of mutant enzyme with heme and/or DTT treatment significantly inhibited the enzyme. Mutant enzyme reconstituted with ferrous heme was activated by NO and CO alone and showed additive effects between gaseous effectors and the allosteric activator 5-cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]-pyrimidin-4-ylamine. We propose that the heme moiety through its coordination with His-105 of the beta subunit acts as an endogenous inhibitor of sGC. Disruption of the heme-coordinating bond induced by binding of NO releases the restrictions imposed by this bond and allows the formation of an optimally organized catalytic center in the heterodimer.
Project description:As newborn screening programs transition from paper-based data exchange toward automated, electronic methods, significant data exchange challenges must be overcome. This article outlines a data model that maps newborn screening data elements associated with patient demographic information, birthing facilities, laboratories, result reporting, and follow-up care to the LOINC, SNOMED CT, ICD-10-CM, and HL7 healthcare standards. The described framework lays the foundation for the implementation of standardized electronic data exchange across newborn screening programs, leading to greater data interoperability. The use of this model can accelerate the implementation of electronic data exchange between healthcare providers and newborn screening programs, which would ultimately improve health outcomes for all newborns and standardize data exchange across programs.