Project description:Kidney diseases such as AKI, CKD, and GN can lead to dialysis and the need for kidney transplantation. The pathologies for kidney diseases are extremely complex, progress at different rates, and involve several cell types and cell signaling pathways. Complex kidney diseases require therapeutics that can act on multiple targets. In the past 10 years, in silico design of drugs has allowed for multi-target drugs to progress quickly from concept to reality. Several multi-target drugs have been made successfully to target AA pathways and transcription factors for the treatment of inflammatory, fibrotic, and metabolic diseases. Multi-target drugs have also demonstrated great potential to treat diabetic nephropathy and fibrotic kidney disease. These drugs act by decreasing renal TGF-β signaling, inflammation, mitochondrial dysfunction, and oxidative stress. There are several other recently developed multi-target drugs that have yet to be tested for their ability to combat kidney diseases. Overall, there is excellent potential for multi-target drugs that act on several cell types and signaling pathways to treat kidney diseases.
Project description:RLIP76 is a multifunctional transporter protein that serves as an energy-dependent efflux mechanism for endogenously generated toxic metabolites as well as exogenous toxins, including chemotherapy drugs. Our recent studies in cultured cells, syngeneic animal tumor model, and in xenograft model have shown that RLIP76 serves a major cancer-specific antiapoptotic role in a wide variety of histologic types of cancer, including leukemia, melanoma, colon, lung, prostate, and ovarian cancer. Results of present studies in cell culture and xenograft model of Caki-2 cells show that RLIP76 is an important anticancer for kidney cancer because inhibition of RLIP76 function by antibody or its depletion by small interfering RNA or antisense DNA caused marked and sustained regression of established human kidney xenografts of Caki-2 cells in nude mouse.
Project description:Amine oxidase copper-containing 1 (AOC1; formerly known as amiloride-binding protein 1) is a secreted glycoprotein that catalyzes the degradation of putrescine and histamine. Polyamines and their diamine precursor putrescine are ubiquitous to all organisms and fulfill pivotal functions in cell growth and proliferation. Despite the importance of AOC1 in regulating polyamine breakdown, very little is known about the molecular mechanisms that control its expression. We report here that the Wilms tumor protein, WT1, which is necessary for normal kidney development, activates transcription of the AOC1 gene. Expression of a firefly luciferase reporter under control of the proximal AOC1 promoter was significantly enhanced by co-transfection of a WT1 expression construct. Binding of WT1 protein to a cis-regulatory element in the AOC1 promoter was confirmed by electrophoretic mobility shift assay and chromatin immunoprecipitation. Antisense inhibition of WT1 protein translation strongly reduced Aoc1 transcripts in cultured murine embryonic kidneys and gonads. Aoc1 mRNA levels correlated with WT1 protein in several cell lines. Double immunofluorescent staining revealed a co-expression of WT1 and AOC1 proteins in the developing genitourinary system of mice and rats. Strikingly, induced changes in polyamine homeostasis affected branching morphogenesis of cultured murine embryonic kidneys in a developmental stage-specific manner. These findings suggest that WT1-dependent control of polyamine breakdown, which is mediated by changes in AOC1 expression, has a role in kidney organogenesis.
Project description:Background:Kidney cancer and clear cell renal carcinoma (ccRCC) are the 16th most common cause of death worldwide. ccRCC is often metastasized at diagnosis, and surgery remains the main treatment; therefore, early diagnosis and new therapeutic strategies are highly desirable. KAT inhibitor CPTH2 lowers histone H3 acetylation and induces apoptosis in colon cancer and cultured cerebellar granule neurons. In this study, we have evaluated the effects of CPTH2 on ccRCC 786-O cell line and analyzed drug targets expressed in ccRCC tumor tissues at different grade. Results:CPTH2 decreases cell viability, adhesion, and invasiveness in ccRCC cell line 786-O. It shows preferential inhibition for KAT3B-p300 with hypoacetilating effects on histone H3 at specific H3-K18. Immunohistochemical analysis of 70 ccRCC tumor tissues compared with peritumoral normal epithelium showed a statistical significant reduction of p300/H3AcK18 paralleled by an increase of H3AcK14 in G1 grade and an opposed trend during tumor progression to worst grades. In this study, we demonstrate that these marks are CPTH2 targets and significative prognosticators of low-grade ccRCC tumor. Conclusions:ccRCC is substantially insensitive to current therapies, and the efficacy of clinical treatment is dependent on the dissemination stage of the tumor. The present study shows that CPTH2 is able to induce apoptosis and decrease the invasiveness of a ccRCC cell line through the inhibition of KAT3B. In a tumor tissue analysis, we identified new prognosticator marks in grade G1 ccRCC tumors. Low KAT3B/H3AcK18 vs. high H3AcK14 were found in G1 while an opposed trend characterized tumor progression to worst grades. Our collected results suggest that CPTH2 reducing KAT3B and H3AcK18 can be considered a promising candidate for counteracting the progression of ccRCC tumors.
Project description:Despite the tremendous progress made in the field of cancer therapy in recent years, certain solid tumors still cannot be successfully treated. Alongside classical treatments in the form of chemotherapy and/or radiotherapy, targeted treatments such as immunotherapy that cause fewer side effects emerge as new options in the clinics. However, these alternative treatments may not be useful for treating all types of cancers, especially for killing infiltrative and circulating tumor cells (CTCs). Recent advances pursue the trapping of these cancer cells within a confined area to facilitate their removal for therapeutic and diagnostic purposes. A good understanding of the mechanisms behind tumor cell migration may drive the design of traps that mimic natural tumor niches and guide the movement of the cancer cells. To bring this trapping idea into reality, strong efforts are being made to create structured materials that imitate myelinated fibers, blood vessels, or pre-metastatic niches and incorporate chemical cues such as chemoattractants or adhesive proteins. In this review, the different strategies used (or could be used) to trap tumor cells are described, and relevant examples of their performance are analyzed.
Project description:Mitochondrial dysfunction is important in the pathogenesis of various kidney diseases and the mitochondria potentially serve as therapeutic targets necessitating further investigation. Alterations in mitochondrial biogenesis, imbalance between fusion and fission processes leading to mitochondrial fragmentation, oxidative stress, release of cytochrome c and mitochondrial DNA resulting in apoptosis, mitophagy, and defects in energy metabolism are the key pathophysiological mechanisms underlying the role of mitochondrial dysfunction in kidney diseases. Currently, various strategies target the mitochondria to improve kidney function and kidney treatment. The agents used in these strategies can be classified as biogenesis activators, fission inhibitors, antioxidants, mPTP inhibitors, and agents which enhance mitophagy and cardiolipin-protective drugs. Several glucose-lowering drugs, such as glucagon-like peptide-1 receptor agonists (GLP-1-RA) and sodium glucose co-transporter-2 (SGLT-2) inhibitors are also known to have influences on these mechanisms. In this review, we delineate the role of mitochondrial dysfunction in kidney disease, the current mitochondria-targeting treatment options affecting the kidneys and the future role of mitochondria in kidney pathology.
Project description:In recent years, the influence of the tumor microenvironment (TME) on cancer progression has been better understood. Macrophages, one of the most important cell types in the TME, exist in different subtypes, each of which has a different function. While classically activated M1 macrophages are involved in inflammatory and malignant processes, activated M2 macrophages are more involved in the wound-healing processes occurring in tumors. Tumor-associated macrophages (TAM) display M2 macrophage characteristics and support tumor growth and metastasis by matrix remodeling, neo-angiogenesis, and suppressing local immunity. Due to their detrimental role in tumor growth and metastasis, selective targeting of TAM for the treatment of cancer may prove to be beneficial in the treatment of cancer. Due to the plastic nature of macrophages, their activities may be altered to inhibit tumor growth. In this review, we will discuss the therapeutic options for the modulation and targeting of TAM. Different therapeutic strategies to deplete, inhibit recruitment of, or re-educate TAM will be discussed. Current strategies for the targeting of TAM using nanomedicine are reviewed. Passive targeting using different nanoparticle systems is described. Since TAM display a number of upregulated surface proteins compared to non-TAM, specific targeting using targeting ligands coupled to nanoparticles is discussed in detail.
Project description:By analyzing the gene expression profile between tumor cells and revertant counterparts that have a suppressed malignant phenotype, we previously reported a significant down-regulation of translationally controlled tumor protein (TCTP) in the revertants. In the present study, we derived, by using the H1 parvovirus as a selective agent, revertants from three major solid cancers: colon, lung, and melanoma cell lines. These cells have a strongly suppressed malignant phenotype both in vitro and in vivo. The level of TCTP is decreased in most of the revertants. To verify whether inhibition of TCTP expression induces changes in the malignant phenotype, in the classical, well established model of "flat reversion," v-src-transformed NIH3T3 cells were transfected with antisense TCTP. By inhibiting the expression of TCTP, the number of revertant cells was raised to 30%, instead of the reported rate for spontaneous flat revertants of 10(-6). Because TCTP encodes for a histamine-releasing factor, we tested the hypothesis that inhibitors of the histaminic pathway could be effective against tumor cells. We show that some antihistaminic compounds (hydroxyzine and promethazine) and other pharmacological compounds with a related structure (including thioridazine and sertraline) kill tumor cells and significantly decrease the level of TCTP. All together, these data suggest that, with tumor reversion used as a working model, TCTP was identified as a target and drugs were selected that decrease its expression and kill tumor cells.
Project description:The new disease produced by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) represents a major pandemic event nowadays. Since its origin in China in December 2019, there is compelling evidence that novel SARS-CoV-2 is a highly transmissible virus, and it is associated to a broad clinical spectrum going from subclinical presentation to severe respiratory distress and multiorgan failure. Like other coronaviruses, SARS-CoV-2 recognizes human angiotensin-converting enzyme 2 as a cellular receptor that allows it to infect different host cells and likely disrupts renin-angiotensin-aldosterone system homeostasis. Particularly, a considerable incidence of many renal abnormalities associated to COVID-19 has been reported, including proteinuria, hematuria, and acute kidney injury. Moreover, it has been recently demonstrated that SARS-CoV-2 can infect podocytes and tubular epithelial cells, which could contribute to the development of the aforementioned renal abnormalities. In this review, we discuss the biological aspects of SARS-CoV-2 infection, how understanding current knowledge about SARS-CoV-2 infection may partly explain the involvement of the kidneys in the pathophysiology of COVID-19, and what questions have arisen and remain to be explored.