Neoadjuvant Chemoradiotherapy With CRLX-101 and Capecitabine for Rectal Cancer
Ontology highlight
ABSTRACT: This trial will enroll patients with locally advanced rectal cancer (resectable and non-resectable).The phase Ib dose escalation portion of trial is designed to determine the maximum tolerated dose (MTD) of CRLX101 when combined with standard neoadjuvant therapies capecitabine (Cape) and radiation therapy (XRT). CRLX101 is a nanopharmaceutical (NP) formulation of camptothecin. These results will determine the recommended phase II dose (RP2D) for CRLX101 in this setting. The phase II portion of the trial is designed to evaluate the efficacy and safety of CRLX101 at the RP2D, when combined with capecitabine and radiation therapy prior to surgery.
DISEASE(S): Rectal Neoplasms,Colorectal Cancer,Rectal Cancer
Project description:KW-2450 is an oral dual insulin-like growth factor-1 receptor/insulin receptor tyrosine kinase inhibitor. We investigated the in vitro and in vivo preclinical activity of KW-2450 plus lapatinib and letrozole and conducted a phase I trial of the triple-drug combination in one male and 10 postmenopausal female patients with advanced/metastatic hormone receptorpositive, human epidermal growth factor receptor 2 (HER2)-positive breast cancer. A series of in vitro and in vivo animal studies was undertaken of KW-2450 in combination with lapatinib and hormonal agents. The phase I trial was conducted to establish the safety, tolerability, and recommended phase II dose (RP2D) of KW-2450 administered in combination with lapatinib and letrozole. Preclinical studies showed KW-2450 and lapatinib act synergistically to induce in vitro apoptosis and inhibit growth of HER2-positive MDA-MB-361 and BT-474 breast cancer cell lines. This combined effect was confirmed in vivo using the MDA-MB-361 xenograft model. KW-2450 showed synergistic in vitro growth inhibition with letrozole and 4-hydroxytamoxifen in ER-positive MCF-7 breast cancer cells and MCF-7-Ac1 aromatase-transfected MCF-7 cells. In the phase I study, dose-limiting toxicity (DLT; grade 3 rash and grade 3 hyperglycemia, respectively) occurred in two of three patients at the dose of KW-2450 25 mg/day plus lapatinib 1500 mg/day and letrozole 2.5 mg/day. The RP2D of the triple-drug combination was established as KW-2450 25 mg/day, lapatinib 1250 mg/day, and letrozole 2.5 mg/day with no DLT at this dose level.
Project description:Patients with pretreated advanced colorectal cancer are recruited to the phase I portion of this prospective non-randomised study in an escalated dose cohort. The primary endpoint of the dose-escalation phase is to determine the maximum tolerated dose (MTD) and recommended phase 2 dose (RP2D) of anlotinib when given in combination with irinotecan. The phase II (dose-expansion) portion is designed to characterize the safety and potential efficacy of the combination therapy in pretreated advanced colorectal cancer patients.
Project description:This is an open-label, multi-center, dose-finding study of tivozanib administered in combination with capecitabine. During the dose-escalation portion, sequential cohorts of subjects with advanced solid tumors will be enrolled in order to establish the maximum tolerated dose (MTD). If the MTD is not reached, the recommended Phase 2 dose (RP2D) will be determined. In the expansion cohort, subjects with locally advanced or metastatic breast or colon cancer will be enrolled at MTD (or RP2D) to further evaluate safety and activity of this combination in these tumor types.
Project description:RATIONALE: Drugs used in chemotherapy, such as oxaliplatin and capecitabine, work in different ways to stop tumor cells from dividing so they stop growing or die. Radiation therapy uses high-energy x-rays to damage tumor cells. Oxaliplatin and capecitabine may make tumor cells more sensitive to radiation therapy and may kill more tumor cells. Giving chemotherapy with radiation therapy before surgery may shrink the tumor so that it can be removed.
PURPOSE: This phase I/II trial is studying the side effects and best dose of oxaliplatin and capecitabine when given together with radiation therapy and to see how well they work in treating patients who are undergoing surgery for locally advanced cancer of the rectum. NOTE: *The phase I portion of this trial closed 06/2005. The best dose of oxaliplatin and capecitabine has been determined.
Project description:This study was designed to identify molecular changes induced by radiation in mouse lung. Mouse left lung was irradiated with a single dose of radiation. Total RNA from the irradiated lung tissue was subject to single channnel microarray.
Project description:Genomic radiation signature illuminates low-dose effects with sharply reflected transcriptome in Ptch1-deficient medulloblastomas. Cancer risks of low-dose radiation are of great concern especially in relation to rapidly increasing medical exposures; however, their accurate assessments cope with many challenges and difficulties, partly due to the inability to distinguish radiation-induced tumors from spontaneous ones. Here, we analyzed the dose-dependent effect of radiation on medulloblastoma development in Ptch1 heterozygous mice on C3B6F1 background. The incidence and latency of medulloblastoma increased and shortened with increasing radiation dose, respectively. Amazingly, radiation contributed to tumorigenesis even at 50 mGy and 100% of mice got medulloblastoma with 1.5 Gy. Loss of heterozygosity (LOH) analysis on a total of 164 tumors indicated that spontaneous tumors showed LOH in broad regions on chromosome 13, including Ptch1 and distally-extending telomeric portion (S-type). In contrast, tumors developed after 3 Gy irradiation exhibited interstitial losses around Ptch1 (R-type). A clear dose-dependent increase in the proportion of R-type tumor at intermediate doses suggested R-type to be a reliable radiation signature. Array-CGH analysis indicated the R-type-specific copy-number reduction around Ptch1 and LOH-type-independent frequent gains of whole chromosome 6. Integrated expression microarray analysis indicated that expression levels of many genes within the altered genomic regions faithfully reflected the genomic copy-number changes. Furthermore, it was also suggested that these expression changes in turn influenced on many other genes, such as Tgfb2 and Tgfb3, on widespread genomic regions. This is the first demonstration that radiation-induced tumors developed after low-dose irradiation can be characterized quite precisely by interstitial deletion of Ptch1 and by associated gene expression profile.
Project description:Genomic radiation signature illuminates low-dose effects with sharply reflected transcriptome in Ptch1-deficient medulloblastomas. Cancer risks of low-dose radiation are of great concern especially in relation to rapidly increasing medical exposures; however, their accurate assessments cope with many challenges and difficulties, partly due to the inability to distinguish radiation-induced tumors from spontaneous ones. Here, we analyzed the dose-dependent effect of radiation on medulloblastoma development in Ptch1 heterozygous mice on C3B6F1 background. The incidence and latency of medulloblastoma increased and shortened with increasing radiation dose, respectively. Amazingly, radiation contributed to tumorigenesis even at 50 mGy and 100% of mice got medulloblastoma with 1.5 Gy. Loss of heterozygosity (LOH) analysis on a total of 164 tumors indicated that spontaneous tumors showed LOH in broad regions on chromosome 13, including Ptch1 and distally-extending telomeric portion (S-type). In contrast, tumors developed after 3 Gy irradiation exhibited interstitial losses around Ptch1 (R-type). A clear dose-dependent increase in the proportion of R-type tumor at intermediate doses suggested R-type to be a reliable radiation signature. Array-CGH analysis indicated the R-type-specific copy-number reduction around Ptch1 and LOH-type-independent frequent gains of whole chromosome 6. Integrated expression microarray analysis indicated that expression levels of many genes within the altered genomic regions faithfully reflected the genomic copy-number changes. Furthermore, it was also suggested that these expression changes in turn influenced on many other genes, such as Tgfb2 and Tgfb3, on widespread genomic regions. This is the first demonstration that radiation-induced tumors developed after low-dose irradiation can be characterized quite precisely by interstitial deletion of Ptch1 and by associated gene expression profile.
Project description:Genomic radiation signature illuminates low-dose effects with sharply reflected transcriptome in Ptch1-deficient medulloblastomas. Cancer risks of low-dose radiation are of great concern especially in relation to rapidly increasing medical exposures; however, their accurate assessments cope with many challenges and difficulties, partly due to the inability to distinguish radiation-induced tumors from spontaneous ones. Here, we analyzed the dose-dependent effect of radiation on medulloblastoma development in Ptch1 heterozygous mice on C3B6F1 background. The incidence and latency of medulloblastoma increased and shortened with increasing radiation dose, respectively. Amazingly, radiation contributed to tumorigenesis even at 50 mGy and 100% of mice got medulloblastoma with 1.5 Gy. Loss of heterozygosity (LOH) analysis on a total of 164 tumors indicated that spontaneous tumors showed LOH in broad regions on chromosome 13, including Ptch1 and distally-extending telomeric portion (S-type). In contrast, tumors developed after 3 Gy irradiation exhibited interstitial losses around Ptch1 (R-type). A clear dose-dependent increase in the proportion of R-type tumor at intermediate doses suggested R-type to be a reliable radiation signature. Array-CGH analysis indicated the R-type-specific copy-number reduction around Ptch1 and LOH-type-independent frequent gains of whole chromosome 6. Integrated expression microarray analysis indicated that expression levels of many genes within the altered genomic regions faithfully reflected the genomic copy-number changes. Furthermore, it was also suggested that these expression changes in turn influenced on many other genes, such as Tgfb2 and Tgfb3, on widespread genomic regions. This is the first demonstration that radiation-induced tumors developed after low-dose irradiation can be characterized quite precisely by interstitial deletion of Ptch1 and by associated gene expression profile.
Project description:Genomic radiation signature illuminates low-dose effects with sharply reflected transcriptome in Ptch1-deficient medulloblastomas. Cancer risks of low-dose radiation are of great concern especially in relation to rapidly increasing medical exposures; however, their accurate assessments cope with many challenges and difficulties, partly due to the inability to distinguish radiation-induced tumors from spontaneous ones. Here, we analyzed the dose-dependent effect of radiation on medulloblastoma development in Ptch1 heterozygous mice on C3B6F1 background. The incidence and latency of medulloblastoma increased and shortened with increasing radiation dose, respectively. Amazingly, radiation contributed to tumorigenesis even at 50 mGy and 100% of mice got medulloblastoma with 1.5 Gy. Loss of heterozygosity (LOH) analysis on a total of 164 tumors indicated that spontaneous tumors showed LOH in broad regions on chromosome 13, including Ptch1 and distally-extending telomeric portion (S-type). In contrast, tumors developed after 3 Gy irradiation exhibited interstitial losses around Ptch1 (R-type). A clear dose-dependent increase in the proportion of R-type tumor at intermediate doses suggested R-type to be a reliable radiation signature. Array-CGH analysis indicated the R-type-specific copy-number reduction around Ptch1 and LOH-type-independent frequent gains of whole chromosome 6. Integrated expression microarray analysis indicated that expression levels of many genes within the altered genomic regions faithfully reflected the genomic copy-number changes. Furthermore, it was also suggested that these expression changes in turn influenced on many other genes, such as Tgfb2 and Tgfb3, on widespread genomic regions. This is the first demonstration that radiation-induced tumors developed after low-dose irradiation can be characterized quite precisely by interstitial deletion of Ptch1 and by associated gene expression profile. Gene expression in 3 normal cerebellum tissues and 12 medulloblastomas was measured.
Project description:Genomic radiation signature illuminates low-dose effects with sharply reflected transcriptome in Ptch1-deficient medulloblastomas. Cancer risks of low-dose radiation are of great concern especially in relation to rapidly increasing medical exposures; however, their accurate assessments cope with many challenges and difficulties, partly due to the inability to distinguish radiation-induced tumors from spontaneous ones. Here, we analyzed the dose-dependent effect of radiation on medulloblastoma development in Ptch1 heterozygous mice on C3B6F1 background. The incidence and latency of medulloblastoma increased and shortened with increasing radiation dose, respectively. Amazingly, radiation contributed to tumorigenesis even at 50 mGy and 100% of mice got medulloblastoma with 1.5 Gy. Loss of heterozygosity (LOH) analysis on a total of 164 tumors indicated that spontaneous tumors showed LOH in broad regions on chromosome 13, including Ptch1 and distally-extending telomeric portion (S-type). In contrast, tumors developed after 3 Gy irradiation exhibited interstitial losses around Ptch1 (R-type). A clear dose-dependent increase in the proportion of R-type tumor at intermediate doses suggested R-type to be a reliable radiation signature. Array-CGH analysis indicated the R-type-specific copy-number reduction around Ptch1 and LOH-type-independent frequent gains of whole chromosome 6. Integrated expression microarray analysis indicated that expression levels of many genes within the altered genomic regions faithfully reflected the genomic copy-number changes. Furthermore, it was also suggested that these expression changes in turn influenced on many other genes, such as Tgfb2 and Tgfb3, on widespread genomic regions. This is the first demonstration that radiation-induced tumors developed after low-dose irradiation can be characterized quite precisely by interstitial deletion of Ptch1 and by associated gene expression profile. Three medulloblastomas were analyzed by array-CGH method.