Intestinal Microflora in Colorectal Cancer (CRC) After Chemotherapy
Ontology highlight
ABSTRACT: Probiotics modulate the gut microflora and immune status in CRC,which can reduce the side effects of chemotherapy such as diarrhea,infection,neutropenia etc.
DISEASE(S): Gastrointestinal Neoplasms,Tumor Immunity,Effects Of Chemotherapy,Colorectal Cancer,Colorectal Neoplasms,Malnutrition,Digestive System Neoplasms
Project description:Transcriptional profiling of mouse gut wall tissue following infection with Salmonella or treatment with Probiotics to see the role of probiotics in preventing salmonella infection through gut mucosal route of mouse.
Project description:FLORINASH - The role of intestinal microflora in non-alcoholic fatty liver disease (NAFLD) EU FP7-HEALTH, project number 241913<br>Florinash examined the role on the gut microbiota in NAFLD. Metagenomic, proteomic, metabolomic and transcriptomic data were integrated to give provide a systems biology approach to disease-associated studies. Liver biopsies were obtained from patients undergoing bariatric surgery; one was used to diagnose NAFLD, the other was used to examine the host transcriptome in NAFLD. This dataset is part of the TransQST collection.
Project description:A huge number of microorganisms are colonized in human gut and the balance of their composition is closely related to human health. Recently, many probiotics such as bifidobacteria or lactobacilli have been introduced in our life as effective agents. However, we have not well understood their beneficial mechanisms including host-bacterial crosstalk. Accordingly, we took advantage of the protective mechanisms of probiotics against lethal infection of enterohemorrhagic Escherichia coli O157:H7 in murine gnotobiote model system
Project description:A huge number of microorganisms are colonized in human gut and the balance of their composition is closely related to human health. Recently, many probiotics such as bifidobacteria or lactobacilli have been introduced in our life as effective agents. However, we have not well understood their beneficial mechanisms including host-bacterial crosstalk. Accordingly, we took advantage of the protective mechanisms of probiotics against lethal infection of enterohemorrhagic Escherichia coli O157:H7 in murine gnotobiote model system Germ free (GF) mice was used as control. E means O157-monoassociated mice. BAE means B. adolescentis and O157-associated mice. BLE means B. longum and O157-associated mice. Numbers indicate the days after O157 infection.
Project description:The pharmacological significance of B vitamins, essential for various metabolic processes, and the therapeutic potential of probiotics in gastrointestinal health have been well-documented. However, the interactions between these entities remain poorly understood. In this study, we endeavored to elucidate the potential interplay between B vitamins and probiotics utilizing liquid chromatography-triple quadrupole mass spectrometry, pharmacokinetic modeling, and 16S rRNA gene sequencing. Employing healthy and pseudo-germ-free rat models, we revealed that probiotics significantly improve the absorption of B1, B3, B5, and B12, and that the gut microbiota played a mediating role in this enhanced absorption of B vitamins by probiotics. High-throughput genetic sequencing uncovered a synergistic effect of B vitamins and probiotics in modulating the gut microbiota, particularly increasing the abundance of Verrucomicrobia and Akkermansia. Furthermore, in vitro experiments demonstrated that probiotics used in this study had a relatively minor influence on the production and permeability of B vitamins, while B vitamins did not significantly contribute to the growth, auto-aggregation, and adhesion of probiotics. In summary, a complex network connection exists between B vitamins and probiotics, wherein the gut microbiota emerges as a pivotal factor that cannot be overlooked.