Real-World Validation of an Artificial Intelligence Characterization Support (CADx) System
Ontology highlight
ABSTRACT: Colorectal cancer (CRC) is a leading cause of cancer-related morbidity and mortality worldwide, with rates of CRC predicted to increase. Colonoscopy is currently the gold standard of screening for CRC. Artificial intelligence (AI) is seen as a solution to bridge this gap in adenoma detection, which is a quality indicator in colonoscopy. AI systems utilize deep neural networks to enable computer-aided detection (CADe) and computer-aided classification (CADx). CADe is concerned with the detection of polyps during colonoscopy, which in turn is postulated to help decrease the adenoma miss-rate.
In contrast, CADx deals with the interpretation of polyp appearance during colonoscopy to determine the predicted histology. Prediction of polyp histology is crucial in helping Clinicians decide on a "resect and discard" or "diagnose and leave strategy". It is also useful for the Clinician to be aware of the predicted histology of a colorectal polyp in determining the appropriate method of resection in terms of safety and efficacy. While CADe has been studied extensively in randomized controlled trials, there is a lack of prospective data validating the use of CADx in a clinical setting to predict polyp histology.
The investigators plan to conduct a prospective, multi-centre clinical trial to validate the accuracy of CADx support for prediction of polyp histology in real-time colonoscopy.
DISEASE(S): Colonic Dysplasia,Colonic Polyps,Colonic Polyp,Polyps,Colonic Neoplasms
PROVIDER: 2388863 | ecrin-mdr-crc |
REPOSITORIES: ECRIN MDR
ACCESS DATA