Project description:Background: The risk factors for adverse events of Coronavirus Disease-19 (COVID-19) have not been well described. We aimed to explore the predictive value of clinical, laboratory and CT imaging characteristics on admission for short-term outcomes of COVID-19 patients. Methods: This multicenter, retrospective, observation study enrolled 703 laboratory-confirmed COVID-19 patients admitted to 16 tertiary hospitals from 8 provinces in China between January 10, 2020 and March 13, 2020. Demographic, clinical, laboratory data, CT imaging findings on admission and clinical outcomes were collected and compared. The primary endpoint was in-hospital death, the secondary endpoints were composite clinical adverse outcomes including in-hospital death, admission to intensive care unit (ICU) and requiring invasive mechanical ventilation support (IMV). Multivariable Cox regression, Kaplan-Meier plots and log-rank test were used to explore risk factors related to in-hospital death and in-hospital adverse outcomes. Results: Of 703 patients, 55 (8%) developed adverse outcomes (including 33 deceased), 648 (92%) discharged without any adverse outcome. Multivariable regression analysis showed risk factors associated with in-hospital death included ? 2 comorbidities (hazard ratio [HR], 6.734; 95% CI; 3.239-14.003, p < 0.001), leukocytosis (HR, 9.639; 95% CI, 4.572-20.321, p < 0.001), lymphopenia (HR, 4.579; 95% CI, 1.334-15.715, p = 0.016) and CT severity score > 14 (HR, 2.915; 95% CI, 1.376-6.177, p = 0.005) on admission, while older age (HR, 2.231; 95% CI, 1.124-4.427, p = 0.022), ? 2 comorbidities (HR, 4.778; 95% CI; 2.451-9.315, p < 0.001), leukocytosis (HR, 6.349; 95% CI; 3.330-12.108, p < 0.001), lymphopenia (HR, 3.014; 95% CI; 1.356-6.697, p = 0.007) and CT severity score > 14 (HR, 1.946; 95% CI; 1.095-3.459, p = 0.023) were associated with increased odds of composite adverse outcomes. Conclusion: The risk factors of older age, multiple comorbidities, leukocytosis, lymphopenia and higher CT severity score could help clinicians identify patients with potential adverse events.
| S-EPMC7255028 | biostudies-literature