Project description:DNA mutational events are increasingly being identified in autism spectrum disorder (ASD), but the potential additional role of dysregulation of the epigenome in the pathogenesis of the condition remains unclear. The epigenome is of interest as a possible mediator of environmental effects during development, encoding a cellular memory reflected by altered function of progeny cells. Advanced maternal age (AMA) is associated with an increased risk of having a child with ASD for reasons that are not understood. To explore whether AMA involves covert aneuploidy or epigenetic dysregulation leading to ASD in the offspring, we tested a homogeneous ectodermal cell type from 47 individuals with ASD compared with 48 typically developing (TD) controls born to mothers of ≥35 years, using a quantitative genome-wide DNA methylation assay. We show that DNA methylation patterns are dysregulated in ectodermal cells in these individuals, having accounted for confounding effects due to subject age, sex and ancestral haplotype. We did not find mosaic aneuploidy or copy number variability to occur at differentially-methylated regions in these subjects. Of note, the loci with distinctive DNA methylation were found at genes expressed in the brain and encoding protein products significantly enriched for interactions with those produced by known ASD-causing genes, representing a perturbation by epigenomic dysregulation of the same networks compromised by DNA mutational mechanisms. The results indicate the presence of a mosaic subpopulation of epigenetically-dysregulated, ectodermally-derived cells in subjects with ASD. The epigenetic dysregulation observed in these ASD subjects born to older mothers may be associated with aging parental gametes, environmental influences during embryogenesis or could be the consequence of mutations of the chromatin regulatory genes increasingly implicated in ASD. The results indicate that epigenetic dysregulatory mechanisms may complement and interact with DNA mutations in the pathogenesis of the disorder.
Project description:Autism Spectrum Disorder (ASD) comprises a heterogeneous group of neurodevelopmental disorders with a strong heritable genetic component. At present, ASD is diagnosed solely by behavioral criteria. Advances in genomic analysis have contributed to numerous candidate genes for the risk of ASD, where rare mutations and s common variants contribute to its susceptibility. Moreover, studies show rare de novo variants, copy number variation and single nucleotide polymorphisms (SNPs) also impact neurodevelopment signaling. Exploration of rare and common variants involved in common dysregulated pathways can provide new diagnostic and therapeutic strategies for ASD. Contributions of current innovative molecular strategies to understand etiology of ASD will be explored which are focused on whole exome sequencing (WES), whole genome sequencing (WGS), microRNA, long non-coding RNAs and CRISPR/Cas9 models. Some promising areas of pharmacogenomic and endophenotype directed therapies as novel personalized treatment and prevention will be discussed.
Project description:Autism spectrum disorder (ASD) is a pervasive neurodevelopmental disorder characterized by difficulties in social interaction, language development delays, repeated body movements, and markedly deteriorated activities and interests. Environmental factors, such as viral infection, parental age, and zinc deficiency, can be plausible contributors to ASD susceptibility. As ASD is highly heritable, genetic risk factors involved in neurodevelopment, neural communication, and social interaction provide important clues in explaining the etiology of ASD. Accumulated evidence also shows an important role of epigenetic factors, such as DNA methylation, histone modification, and noncoding RNA, in ASD etiology. In this review, we compiled the research published to date and described the genetic and epigenetic epidemiology together with environmental risk factors underlying the etiology of the different phenotypes of ASD.
Project description:Genetic variants conferring risk for autism spectrum disorder (ASD) have been identified, but the role of post-transcriptional mechanisms in ASD is not well understood. We performed genome-wide microRNA (miRNA) expression profiling in post-mortem brains from individuals with ASD and controls and identified miRNAs and co-regulated modules that were perturbed in ASD. Putative targets of these ASD-affected miRNAs were enriched for genes that have been implicated in ASD risk. We confirmed regulatory relationships between several miRNAs and their putative target mRNAs in primary human neural progenitors. These include hsa-miR-21-3p, a miRNA of unknown CNS function that is upregulated in ASD and that targets neuronal genes downregulated in ASD, and hsa_can_1002-m, a previously unknown, primate-specific miRNA that is downregulated in ASD and that regulates the epidermal growth factor receptor and fibroblast growth factor receptor signaling pathways involved in neural development and immune function. Our findings support a role for miRNA dysregulation in ASD pathophysiology and provide a rich data set and framework for future analyses of miRNAs in neuropsychiatric diseases.
Project description:IntroductionAutism spectrum disorders (ASD) are the most prevalent neurobiological disorders in children. The etiology comprises genetic, epigenetic, and environmental factors such as dysfunction of the immune system. Epigenetic mechanisms are mainly represented by DNA methylation, histone modifications, and microRNAs (miRNA). The major explored epigenetic mechanism is mediated by miRNAs which target genes known to be involved in ASD pathogenesis. Salivary poly-omic RNA measurements have been associated with ASD and are helpful to differentiate ASD endophenotypes. This study aims to comprehensively examine miRNA expression in children with ASD and to reveal potential biomarkers and possible disease mechanisms so that they can be used to improve faction between individuals by promoting more personalized therapeutic approaches.Materials and methodsSaliva samples were collected from 10 subjects: 5 samples of children with ASD and 5 from healthy controls. miRNAs were analyzed using an Illumina Next-Generation-Sequencing (NGS) system.ResultsPreliminary data highlighted the presence of 365 differentially expressed miRNAs. Pathway analysis, molecular function, biological processes, and target genes of 41 dysregulated miRNAs were assessed, of which 20 were upregulated, and 21 were downregulated in children with ASD compared to healthy controls.ConclusionThe results of this study represent preliminary but promising data, as the identified miRNA pathways could represent useful biomarkers for the early non-invasive diagnosis of ASD.
Project description:Autism Spectrum Disorder (ASD) is a complex neuropsychiatric syndrome whose etiology includes genetic and environmental components. Since epigenetic marks are sensitive to environmental insult, they may be involved in the development of ASD. Initial brain studies have suggested a dysregulation of epigenetic marks in ASD. However, due to cellular heterogeneity in the brain, these studies have not determined if there is a true change in the neuronal epigenetic signature. Here, we report a genome-wide methylation study on fluorescence-activated cell sorting-sorted neuronal nuclei from the frontal cortex of 16 male ASD and 15 male control subjects. Using the 450 K BeadArray, we identified 58 differentially methylated regions (DMRs) that included loci associated to GABAergic system genes, particularly ABAT and GABBR1, and brain-specific MicroRNAs. Selected DMRs were validated by targeted Next Generation Bisulfite Sequencing. Weighted gene correlation network analysis detected 3 co-methylation modules which are significantly correlated to ASD that were enriched for genomic regions underlying neuronal, GABAergic, and immune system genes. Finally, we determined an overlap of the 58 ASD-related DMRs with neurodevelopment associated DMRs. This investigation identifies alterations in the DNA methylation pattern in ASD cortical neurons, providing further evidence that epigenetic alterations in disorder-relevant tissues may be involved in the biology of ASD.
Project description:Increasing evidence suggests that epigenetic mechanisms play a role in the etiology of autism spectrum disorder (ASD). To date, several studies have attempted to identify epigenetic biomarkers for ASD. However, reliable markers remain to be established and most of these studies have focused on pediatric patients with ASD. In this study, we sought to find an epigenetic DNA methylation biomarker from peripheral blood for adult patients with high-functioning ASD. DNA methylation profiles were analyzed using the Illumina 450?K methylation array. To identify robust candidate markers, we employed two types of machine-learning algorithms for marker selection. We identified a potential marker (cg20793532) for which is the AUC value was 0.79. Notably, cg20793532 was annotated to the PPP2R2C gene, which was hypermethylated and down-regulated in blood from ASD patients compared to that in the controls. Although requiring careful interpretation, this pilot study seems to provide a potential blood biomarker for identifying individuals with high-functioning ASD.
Project description:The molecular basis for the majority of cases of autism spectrum disorders (ASD) remains unknown. We tested the hypothesis that ASD have an epigenetic cause by performing DNA methylation profiling of five CpG islands (CGI-1 to CGI-5) in the SHANK3 gene in postmortem brain tissues from 54 ASD patients and 43 controls. We found significantly increased overall DNA methylation (epimutation) in three intragenic CGIs (CGI-2, CGI-3 and CGI-4). The increased methylation was clustered in the CGI-2 and CGI-4 in ?15% of ASD brain tissues. SHANK3 has an extensive array of mRNA splice variants resulting from combinations of five intragenic promoters and alternative splicing of coding exons. Altered expression and alternative splicing of SHANK3 isoforms were observed in brain tissues with increased methylation of SHANK3 CGIs in ASD brain tissues. A DNA methylation inhibitor modified the methylation of CGIs and altered the isoform-specific expression of SHANK3 in cultured cells. This study is the first to find altered methylation patterns in SHANK3 in ASD brain samples. Our finding provides evidence to support an alternative approach to investigating the molecular basis of ASD. The ability to alter the epigenetic modification and expression of SHANK3 by environmental factors suggests that SHANK3 may be a valuable biomarker for dissecting the role of gene and environment interaction in the etiology of ASD.
Project description:The aim of this study was to identify ASD vulnerability components, explore possible vulnerability subgroups, and evaluate environmental contribution to phenotypic variability. We performed PCA and cluster analysis using ASD risk factor data. We found that PC1 had a higher correlation with psychosocial stress (maternal stress, maternal education, and social class), and PC2 a higher correlation with biological factors (Psychiatric Family History and Gestational Complications). Clustering analysis of PCA scores using bootstrap approach showed two clusters. Comparing the methylome between clusters we found 11.879 DMPs (p<0.05), and their CpG sites were enriched in VMRs, most showing environmental and genetic influences. Hypermethylated probes presented higher rates in different regulatory regions associated with functional SNPs, indicating that the subgroups may have different affected regulatory regions and their liability to disease explained by common variations. Vulnerability score moderated by epigenetic clock was associated with Vineland Total score (p=0.0036, adjR2=0.31), suggesting risk factors with stress burden can influence phenotype.