Project description:A subset of patients with metastatic colorectal cancer achieves prolonged survival after hepatic resection of limited liver metastases. Here, we examined the molecular features of colorectal liver metastases as they relate to clinical outcomes.
Project description:Cancer cells and fibroblasts from 6 metastases obtained from 5 different patients were submitted to single-cell sequencing on the 10xGenomics platform. These data revealed different subpopulations of cancer-associated fibroblasts (CAF) and their ligand-receptor interactions with cancer cells.
Project description:With the development of chemotherapy regimens, targeted therapies, and hepatic surgery, the survival of patients with colorectal liver metastases (CRLM) has dramatically improved. Imaging plays a central role for the diagnosis, staging, and treatment allocation in these patients. To interpret CRLM on imaging, radiologists must be familiar with the main imaging features of untreated tumors as well as the modifications induced by systemic therapies, and their meaning in relation to pathological tumor response and tumor biology. CRLM have the same histological features as the primary tumor. Most are "non-otherwise specified" (NOS) adenocarcinomas. The mucinous tumor is the most common of the rare subtypes. In NOS tumors, imaging usually differentiates central areas of necrosis from peripheral proliferating tumors and desmoplastic reaction. Areas of mucin mixed with fibrosis are seen in mucinous subtypes to help differentiate the metastases from other tumors cysts or hemangiomas. After treatment, the viable tumor is gradually replaced by ischemic-like necrosis and fibrosis, and remnants cells are mainly located on the periphery of tumors. Imaging can help predict the degree of tumor response, but changes can be difficult to differentiate from the pretherapeutic appearance. When chemotherapy is interrupted or in case of resistance to treatment, a peripheral infiltrating halo of tumor growth may appear. The purpose of the article is to illustrate the significance of the imaging features of colorectal liver metastases during systemic therapy, using radiopathological correlations.
Project description:Molecular characterization of tissue areas in Colorectal Cancer Liver Metastases (CRCLM) and adjacent healthy liver tissue focusing on the comparison between the two main histopathological growth patterns (HGPs): desmoplastic HGP and replacement HGP with the intent to identify possible biomarkers or treatment targets especially for the more aggressive replacement HGP.
Project description:BackgroundColorectal liver metastasis (CLM) is a leading cause of colorectal cancer mortality, and the response to immune checkpoint inhibition (ICI) in microsatellite-stable CRC has been disappointing. Administration of cytotoxic chemotherapy may cause increased density of tumor-infiltrating T cells, which has been associated with improved response to ICI. This study aimed to quantify and characterize T-cell infiltration in CLM using T-cell receptor (TCR) repertoire sequencing. Eighty-five resected CLMs from patients included in the Oslo CoMet study were subjected to TCR repertoire sequencing. Thirty-five and 15 patients had received neoadjuvant chemotherapy (NACT) within a short or long interval, respectively, prior to resection, while 35 patients had not been exposed to NACT. T-cell fractions were calculated, repertoire clonality was analyzed based on Hill evenness curves, and TCR sequence convergence was assessed using network analysis.ResultsIncreased T-cell fractions (10.6% vs. 6.3%) were detected in CLMs exposed to NACT within a short interval prior to resection, while modestly increased clonality was observed in NACT-exposed tumors independently of the timing of NACT administration and surgery. While private clones made up >90% of detected clones, network connectivity analysis revealed that public clones contributed the majority of TCR sequence convergence.ConclusionsTCR repertoire sequencing can be used to quantify T-cell infiltration and clonality in clinical samples. This study provides evidence to support chemotherapy-driven T-cell clonal expansion in CLM in a clinical context.