Project description:Acute myeloid leukemia (AML) is caused by genetic aberrations that also govern the prognosis of patients and guide risk-adapted and targeted therapy. Genetic aberrations in AML are structurally diverse and currently detected by different diagnostic assays. This study sought to establish whole transcriptome RNA sequencing as single, comprehensive, and flexible platform for AML diagnostics. We developed HAMLET (Human AML Expedited Transcriptomics) as bioinformatics pipeline for simultaneous detection of fusion genes, small variants, tandem duplications, and gene expression with all information assembled in an annotated, user-friendly output file. Whole transcriptome RNA sequencing was performed on 100 AML cases and HAMLET results were validated by reference assays and targeted resequencing. The data showed that HAMLET accurately detected all fusion genes and overexpression of EVI1 irrespective of 3q26 aberrations. In addition, small variants in 13 genes that are often mutated in AML were called with 99.2% sensitivity and 100% specificity, and tandem duplications in FLT3 and KMT2A were detected by a novel algorithm based on soft-clipped reads with 100% sensitivity and 97.1% specificity. In conclusion, HAMLET has the potential to provide accurate comprehensive diagnostic information relevant for AML classification, risk assessment and targeted therapy on a single technology platform.
Project description:BackgroundAcute myeloid leukemia (AML) is characterized by uncontrolled proliferation of malignant hematopoietic cells in the bone marrow that are arrested in differentiation. In AML pathogenesis, hematopoietic progenitor cells acquire multiple genetic aberrations often occurring in the same set of genes that ultimately lead to malignant transformation. In the WHO classification 2016, six AML classes with different prognosis are identified by chromosomal translocations measured by standard cytogenetics. All balanced translocations produce fusion genes, except for t(3;3)/inv(3;3), which lead to overexpression of MECOM/EVI1 associated with poor prognosis. For accurate risk assessment of cytogenetically normal AML, four genes need to be screened to distinguish AML with mutated NPM1 in the absence of FLT3 mutations and AML with bi-allelic CEBPA mutations, which have a favorable prognosis, and AML with RUNX1 mutations which have a poor prognosis. Recently, a full genomic classification system has been proposed by Papaemmanuil et al. (NEJM 2016). In this system, the same six classes with chromosomal translocations are identified by standard cytogenetics as well as five additional classes characterized by genetic mutations in 14 different genes. AimThe aim of the study was to investigate whether whole transcriptome RNA-sequencing (RNAseq) can be used as single technology for classification of AML. MethodA panel of 100 AML were analyzed and a bio-informatics pipeline called HAMLET (Human AML Expedited Transcriptomics) was developed in which 4 modules are integrated to detect (1) fusion genes, (2) small variants in 13 recurrently mutated genes, (3) internal tandem duplications in FLT3 (FLT3-ITD) and partial tandem duplications in KMT2A (KMT2A-PTD) and (4) overexpression of MECOM/EVI1. All mutations that were called by HAMLET were validated by diagnostic data as available for all 100 AML or targeted PCR followed by Sanger or next generation sequencing on all positive AML and at least an equal number of negative cases. Results & discussionThe data showed that HAMLET accurately identified all genetic aberrations with high sensitivity and specificity. In addition, in 7 AML, fusion transcripts were detected that are not measured by standard cytogenetics including three cases that lack any class-defining lesion according to Papaemmanuil et al. Moreover, overexpression of MECOM/EVI1 was detected in two AML with inv(3) as well as in five cases without inv(3)/t(3;3), and a gene signature was measured to distinguish AML with CEBPA mutations with favorable prognosis. In conclusion, HAMLET provides a comprehensive and flexible pipeline for RNAseq analysis to retrieve all relevant information for current classification of AML as well as additional information that may improve classification in the future.
Project description:Pediatric AML is characterized by numerous genetic aberrations (chromosomal translocations, deletions, insertions) impacting its classification for risk of treatment failure. Aberrations are described by classical cytogenetic procedures (karyotyping, FISH), which harbor limitations (low resolution, need for cell cultivation, cost-intensiveness, experienced staff required). Optical Genome Mapping (OGM) is an emerging chip-based DNA technique combining high resolution (~500 bp) with a relatively short turnaround time. Twenty-four pediatric patients with AML, bi-lineage leukemia, and mixed-phenotype acute leukemia were analyzed by OGM, and the results were compared with cytogenetics. Results were discrepant in 17/24 (70%) cases, including 32 previously unknown alterations called by OGM only. One newly detected deletion and two translocations were validated by primer walking, breakpoint-spanning PCR, and DNA sequencing. As an added benefit, in two cases, OGM identified a new minimal residual disease (MRD) marker. Comparing impact on risk stratification in de novo AML, 19/20 (95%) cases had concordant results while only OGM unraveled another high-risk aberration. Thus, OGM considerably expands the methodological spectrum to optimize the diagnosis of pediatric AML via the identification of new aberrations. Results will contribute to a better understanding of leukemogenesis in pediatric AML. In addition, aberrations identified by OGM may provide markers for MRD monitoring.
Project description:As a family of G protein-coupled receptors (GPCRs) with a seven-span transmembrane structure, frizzled class receptors (FZDs) play crucial roles in regulating multiple biological functions. However, their transcriptional expression profile and prognostic significance in acute myeloid leukemia (AML) are unclear. In AML, the role of FZDs was explored by performing the comprehensive analysis on the relationship between clinical characteristics and mRNA expression profiles from public databases including cBioPortal for Cancer Genomics, Gene Expression Profile Interactive Analysis (GEPIA), and Cancer Cell Line Encyclopedia (CCLE). We identified that in the majority of 27 AML cell lines, frizzled class receptor 6 (FZD6) was high-expressed. A significantly higher expression of FZD6 in AML patients was observed when compared to normal controls (P < 0.01). Compared with intermediate and poor/adverse risk group patients, FZD6 expressed much lower in cytogenetic favorable risk group patients (P < 0.0001). Patients with higher-expressed FZD6 were associated with shorter overall survival (OS) (P = 0.0089) rather than progression-free survival (PFS). However, the predictive effect of FZD6 on OS could be reversed by hematopoietic stem cell transplantation (HSCT). The data of gene set enrichment analysis (GSEA) demonstrated that 4 gene sets, including MYC targets, HEME metabolism, E2F targets, and UV response, were differentially enriched in the high-expression FZD6 group. To conclude, the study suggested that high expression of FZD6 might be a novel poor prognostic biomarker for AML treatment.
Project description:Recent advances in the genetic understanding of acute myeloid leukemia (AML) have improved clinical outcomes in pediatric patients. However, ∼40% of patients with pediatric AML relapse, resulting in a relatively low overall survival rate of ∼70%. The objective of this study was to reveal the comprehensive genetic background of pediatric AML. We performed transcriptome analysis (RNA sequencing [RNA-seq]) in 139 of the 369 patients with de novo pediatric AML who were enrolled in the Japanese Pediatric Leukemia/Lymphoma Study Group AML-05 trial and investigated correlations between genetic aberrations and clinical information. Using RNA-seq, we identified 54 in-frame gene fusions and 1 RUNX1 out-of-frame fusion in 53 of 139 patients. Moreover, we found at least 258 gene fusions in 369 patients (70%) through reverse transcription polymerase chain reaction and RNA-seq. Five gene rearrangements were newly identified, namely, NPM1-CCDC28A, TRIP12-NPM1, MLLT10-DNAJC1, TBL1XR1-RARB, and RUNX1-FNBP1. In addition, we found rare gene rearrangements, namely, MYB-GATA1, NPM1-MLF1, ETV6-NCOA2, ETV6-MECOM, ETV6-CTNNB1, RUNX1-PRDM16, RUNX1-CBFA2T2, and RUNX1-CBFA2T3. Among the remaining 111 patients, KMT2A-PTD, biallelic CEBPA, and NPM1 gene mutations were found in 11, 23, and 17 patients, respectively. These mutations were completely mutually exclusive with any gene fusions. RNA-seq unmasked the complexity of gene rearrangements and mutations in pediatric AML. We identified potentially disease-causing alterations in nearly all patients with AML, including novel gene fusions. Our results indicated that a subset of patients with pediatric AML represent a distinct entity that may be discriminated from their adult counterparts. Based on these results, risk stratification should be reconsidered.
Project description:Nucleosides and their analogues constitute an essential family of anticancer drugs. DNA has been the presumptive target of the front-line prodrug for acute myeloid leukemia (AML), cytarabine (ara-C), since the 1980s. Here, the biomolecular targeting of ara-C was evaluated in primary white blood cells using the ara-C mimic "AzC" and azide-alkyne "click" reactions. Fluorescent staining and microscopy revealed that metabolic incorporation of AzC into primary white blood cells was unexpectedly enhanced by the DNA polymerase inhibitor aphidicholine. According to RNaseH digestion and pull-down-and-release experiments, AzC was incorporated into short RNA fragments bound to DNA in peripheral blood monocytes (PBMCs) collected from all six healthy human donors tested. Samples from 22 AML patients (French-American-British classes M4 and M5) exhibited much more heterogeneity, with 27% incorporating AzC into RNA and 55% into DNA. The overall survival of AML patients whose samples incorporated AzC into RNA was approximately 3-fold higher as compared to that of the DNA cohort (p ≤ 0.056, χ2 = 3.65). These results suggest that the RNA primers of DNA synthesis are clinically favorable targets of ara-C, and that variable incorporation of nucleoside drugs into DNA versus RNA may enable future patient stratification into treatment-specific subgroups.
Project description:Acute myeloid leukemia (AML) is an aggressive hematological tumor caused by the malignant transformation of myeloid progenitor cells. Although intensive chemotherapy leads to an initial therapeutic response, relapse due to drug resistance remains a significant challenge. In recent years, accumulating evidence has suggested that post-transcriptional methylation modifications are strongly associated with tumorigenesis. However, the mRNA profile of m7G modification in AML and its role in drug-resistant AML are unknown. In this study, we used MeRIP-seq technology to establish the first transcriptome-wide m7G methylome profile for AML and drug-resistant AML cells, and differences in m7G between the two groups were analyzed. In addition, bioinformatics analysis was conducted to explore the function of m7G-specific methylated transcripts. We found significant differences in m7G mRNA modification between AML and drug-resistant AML cells. Furthermore, bioinformatics analysis revealed that differential m7G-modified mRNAs were associated with a wide range of cellular functions. Importantly, down-methylated m7G modification was significantly enriched in ABC transporter-related mRNAs, which are widely recognized to play a key role in multidrug resistance. Our results provide new insights into a novel function of m7G methylation in drug resistance progression of AML.
Project description:Acute myeloid leukemia (AML) is the most common acute leukemia in adults, with an incidence of over 20 000 cases per year in the United States alone. Large chromosomal translocations as well as mutations in the genes involved in hematopoietic proliferation and differentiation result in the accumulation of poorly differentiated myeloid cells. AML is a highly heterogeneous disease; although cases can be stratified into favorable, intermediate and adverse-risk groups based on their cytogenetic profile, prognosis within these categories varies widely. The identification of recurrent genetic mutations, such as FLT3-ITD, NMP1 and CEBPA, has helped refine individual prognosis and guide management. Despite advances in supportive care, the backbone of therapy remains a combination of cytarabine- and anthracycline-based regimens with allogeneic stem cell transplantation for eligible candidates. Elderly patients are often unable to tolerate such regimens, and carry a particularly poor prognosis. Here, we review the major recent advances in the treatment of AML.
Project description:Acute myeloid leukemia (AML) is an aging-related and heterogeneous hematopoietic malignancy. In this study, a total of 1,474 newly diagnosed AML patients with RNA sequencing data were enrolled, and targeted or whole exome sequencing data were obtained in 94% cases. The correlation of aging-related factors including age and clonal hematopoiesis (CH), gender, and genomic/transcriptomic profiles (gene fusions, genetic mutations, and gene expression networks or pathways) was systematically analyzed. Overall, AML patients aged 60 y and older showed an apparently dismal prognosis. Alongside age, the frequency of gene fusions defined in the World Health Organization classification decreased, while the positive rate of gene mutations, especially CH-related ones, increased. Additionally, the number of genetic mutations was higher in gene fusion-negative (GF-) patients than those with GF. Based on the status of CH- and myelodysplastic syndromes (MDS)-related mutations, three mutant subgroups were identified among the GF- AML cohort, namely, CH-AML, CH-MDS-AML, and other GF- AML. Notably, CH-MDS-AML demonstrated a predominance of elderly and male cases, cytopenia, and significantly adverse clinical outcomes. Besides, gene expression networks including HOXA/B, platelet factors, and inflammatory responses were most striking features associated with aging and poor prognosis in AML. Our work has thus unraveled the intricate regulatory circuitry of interactions among different age, gender, and molecular groups of AML.