Project description:De novo loss-of-function (LoF) variants in the KMT2A gene are associated with Wiedemann-Steiner Syndrome (WSS). Recently, de novo KMT2A variants have been identified in sequencing studies of cohorts of individuals with neurodevelopmental disorders (NDDs). However, most of these studies lack the detailed clinical information required to determine whether those individuals have isolated NDDs or WSS (i.e. syndromic NDDs). We performed thorough clinical and neurodevelopmental phenotyping on six individuals with de novo KMT2A variants. From these data, we found that all six patients met clinical criteria for WSS and we further define the neurodevelopmental phenotypes associated with KMT2A variants and WSS. In particular, we identified a subtype of Autism Spectrum Disorder (ASD) in five individuals, characterized by marked rigid, repetitive and inflexible behaviours, emotional dysregulation, externalizing behaviours, but relative social motivation. To further explore the clinical spectrum associated with KMT2A variants, we also conducted a meta-analysis of individuals with KMT2A variants reported in the published literature. We found that de novo LoF or missense variants in KMT2A were significantly more prevalent than predicted by a previously established statistical model of de novo mutation rate for KMT2A. Our genotype-phenotype findings better define the clinical spectrum associated with KMT2A variants and suggest that individuals with de novo LoF and missense variants likely have a clinically unrecognized diagnosis of WSS, rather than isolated NDD or ASD alone. This highlights the importance of a clinical genetic and neurodevelopmental assessment for individuals with such variants in KMT2A.
Project description:Importance:Knowing the range of symptoms seen in patients with a missense or loss-of-function variant in KCNB1 and how these symptoms correlate with the type of variant will help clinicians with diagnosis and prognosis when treating new patients. Objectives:To investigate the clinical spectrum associated with KCNB1 variants and the genotype-phenotype correlations. Design, Setting, and Participants:This study summarized the clinical and genetic information of patients with a presumed pathogenic variant in KCNB1. Patients were identified in research projects or during clinical testing. Information on patients from previously published articles was collected and authors contacted if feasible. All patients were seen at a clinic at one of the participating institutes because of presumed genetic disorder. They were tested in a clinical setting or included in a research project. Main Outcomes and Measures:The genetic variant and its inheritance and information on the patient's symptoms and characteristics in a predefined format. All variants were identified with massive parallel sequencing and confirmed with Sanger sequencing in the patient. Absence of the variant in the parents could be confirmed with Sanger sequencing in all families except one. Results:Of 26 patients (10 female, 15 male, 1 unknown; mean age at inclusion, 9.8 years; age range, 2-32 years) with developmental delay, 20 (77%) carried a missense variant in the ion channel domain of KCNB1, with a concentration of variants in region S5 to S6. Three variants that led to premature stops were located in the C-terminal and 3 in the ion channel domain. Twenty-one of 25 patients (84%) had seizures, with 9 patients (36%) starting with epileptic spasms between 3 and 18 months of age. All patients had developmental delay, with 17 (65%) experiencing severe developmental delay; 14 (82%) with severe delay had behavioral problems. The developmental delay was milder in 4 of 6 patients with stop variants and in a patient with a variant in the S2 transmembrane element rather than the S4 to S6 region. Conclusions and Relevance:De novo KCNB1 missense variants in the ion channel domain and loss-of-function variants in this domain and the C-terminal likely cause neurodevelopmental disorders with or without seizures. Patients with presumed pathogenic variants in KCNB1 have a variable phenotype. However, the type and position of the variants in the protein are (imperfectly) correlated with the severity of the disorder.
Project description:De novo loss-of-function (LoF) variants in the KMT2A gene are associated with Wiedemann-Steiner Syndrome (WSS). Recently, de novo KMT2A variants have been identified in sequencing studies of cohorts of individuals with neurodevelopmental disorders (NDDs). However, most of these studies lack the detailed clinical information required to determine whether those individuals have isolated NDDs or WSS (i.e. syndromic NDDs). We performed thorough clinical and neurodevelopmental phenotyping on six individuals with de novo KMT2A variants. From these data, we found that all six patients met clinical criteria for WSS and we further define the neurodevelopmental phenotypes associated with KMT2A variants and WSS. In particular, we identified a subtype of Autism Spectrum Disorder (ASD) in five individuals, characterized by marked rigid, repetitive and inflexible behaviours, emotional dysregulation, externalizing behaviours, but relative social motivation. To further explore the clinical spectrum associated with KMT2A variants, we also conducted a meta-analysis of individuals with KMT2A variants reported in the published literature. We found that de novo LoF or missense variants in KMT2A were significantly more prevalent than predicted by a previously established statistical model of de novo mutation rate for KMT2A. Our genotype-phenotype findings better define the clinical spectrum associated with KMT2A variants and suggest that individuals with de novo LoF and missense variants likely have a clinically unrecognized diagnosis of WSS, rather than isolated NDD or ASD alone. This highlights the importance of a clinical genetic and neurodevelopmental assessment for individuals with such variants in KMT2A.
Project description:BackgroundDe novo genic and copy number variants are enriched in patients with congenital heart disease, particularly those with extra-cardiac anomalies. The impact of de novo damaging variants on outcomes following cardiac repair is unknown.MethodsWe studied 2517 patients with congenital heart disease who had undergone whole-exome sequencing as part of the CHD GENES study (Congenital Heart Disease Genetic Network).ResultsTwo hundred ninety-four patients (11.7%) had clinically significant de novo variants. Patients with de novo damaging variants were 2.4 times more likely to have extra-cardiac anomalies (P=5.63×10-12). In 1268 patients (50.4%) who had surgical data available and underwent open-heart surgery exclusive of heart transplantation as their first operation, we analyzed transplant-free survival following the first operation. Median follow-up was 2.65 years. De novo variants were associated with worse transplant-free survival (hazard ratio, 3.51; P=5.33×10-04) and longer times to final extubation (hazard ratio, 0.74; P=0.005). As de novo variants had a significant interaction with extra-cardiac anomalies for transplant-free survival (P=0.003), de novo variants conveyed no additional risk for transplant-free survival for patients with these anomalies (adjusted hazard ratio, 1.96; P=0.06). By contrast, de novo variants in patients without extra-cardiac anomalies were associated with worse transplant-free survival during follow-up (hazard ratio, 11.21; P=1.61×10-05) than that of patients with no de novo variants. Using agnostic machine-learning algorithms, we identified de novo copy number variants at 15q25.2 and 15q11.2 as being associated with worse transplant-free survival and 15q25.2, 22q11.21, and 3p25.2 as being associated with prolonged time to final extubation.ConclusionsIn patients with congenital heart disease undergoing open-heart surgery, de novo variants were associated with worse transplant-free survival and longer times on the ventilator. De novo variants were most strongly associated with adverse outcomes among patients without extra-cardiac anomalies, suggesting a benefit for preoperative genetic testing even when genetic abnormalities are not suspected during routine clinical practice. Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT01196182.
Project description:Alternative splicing (AS) is crucial for cell-type-specific gene transcription and plays a critical role in neuronal differentiation and synaptic plasticity. De novo frameshift variants in NOVA2, encoding a neuron-specific key splicing factor, have been recently associated with a new neurodevelopmental disorder (NDD) with hypotonia, neurological features, and brain abnormalities. We investigated eight unrelated individuals by exome sequencing (ES) and identified seven novel pathogenic NOVA2 variants, including two with a novel localization at the KH1 and KH3 domains. In addition to a severe NDD phenotype, novel clinical features included psychomotor regression, attention deficit-hyperactivity disorder (ADHD), dyspraxia, and urogenital and endocrinological manifestations. To test the effect of the variants on splicing regulation, we transfected HeLa cells with wildtype and mutant NOVA2 complementary DNA (cDNA). The novel variants NM_002516.4:c.754_756delCTGinsTT p.(Leu252Phefs*144) and c.1329dup p.(Lys444Glnfs*82) all negatively affected AS events. The distal p.(Lys444Glnfs*82) variant, causing a partial removal of the KH3 domain, had a milder functional effect leading to an intermediate phenotype. Our findings expand the molecular and phenotypic spectrum of NOVA2-related NDD, supporting the pathogenic role of AS disruption by truncating variants and suggesting that this is a heterogeneous condition with variable clinical course.
Project description:BACKGROUND:Genomic structural variants (SVs) can affect many genes and regulatory elements. Therefore, the molecular mechanisms driving the phenotypes of patients carrying de novo SVs are frequently unknown. METHODS:We applied a combination of systematic experimental and bioinformatic methods to improve the molecular diagnosis of 39 patients with multiple congenital abnormalities and/or intellectual disability harboring apparent de novo SVs, most with an inconclusive diagnosis after regular genetic testing. RESULTS:In 7 of these cases (18%), whole-genome sequencing analysis revealed disease-relevant complexities of the SVs missed in routine microarray-based analyses. We developed a computational tool to predict the effects on genes directly affected by SVs and on genes indirectly affected likely due to the changes in chromatin organization and impact on regulatory mechanisms. By combining these functional predictions with extensive phenotype information, candidate driver genes were identified in 16/39 (41%) patients. In 8 cases, evidence was found for the involvement of multiple candidate drivers contributing to different parts of the phenotypes. Subsequently, we applied this computational method to two cohorts containing a total of 379 patients with previously detected and classified de novo SVs and identified candidate driver genes in 189 cases (50%), including 40 cases whose SVs were previously not classified as pathogenic. Pathogenic position effects were predicted in 28% of all studied cases with balanced SVs and in 11% of the cases with copy number variants. CONCLUSIONS:These results demonstrate an integrated computational and experimental approach to predict driver genes based on analyses of WGS data with phenotype association and chromatin organization datasets. These analyses nominate new pathogenic loci and have strong potential to improve the molecular diagnosis of patients with de novo SVs.