Project description:PurposeThis pilot study was performed to test our ability to administer neratinib monotherapy before clinically recommended craniotomy in patients with HER2-positive metastatic breast cancer to the central nervous system, to examine neratinib's central nervous system penetration at craniotomy, and to examine postoperative neratinib maintenance.Patients and methodsPatients with HER2-positive brain metastases undergoing clinically indicated cranial resection of a parenchymal tumor received neratinib 240 mg orally once a day for 7 to 21 days preoperatively, and resumed therapy postoperatively in 28-day cycles. Exploratory evaluations of time to disease progression, survival, and correlative tissue, cerebrospinal fluid (CSF), and blood-based analyses examining neratinib concentrations were planned. The study was registered at ClinicalTrials.gov under number NCT01494662.ResultsWe enrolled 5 patients between May 22, 2013, and October 18, 2016. As of March 1, 2019, patients had remained on the study protocol for 1 to 75+ postoperative cycles pf therapy. Two patients had grade 3 diarrhea. Evaluation of the CSF showed low concentrations of neratinib; nonetheless, 2 patients continued to receive therapy without disease progression for at least 13 cycles, with one on-study treatment lasting for nearly 6 years. Neratinib distribution in surgical tissue was variable for 1 patient, while specimens from 2 others did not produce conclusive results as a result of limited available samples.ConclusionNeratinib resulted in expected rates of diarrhea in this small cohort, with 2 of 5 patients receiving the study treatment for durable periods. Although logistically challenging, we were able to test a limited number of CSF- and parenchymal-based neratinib concentrations. Our findings from resected tumor tissue in one patient revealed heterogeneity in drug distribution and tumor histopathology.
Project description:Recently, the H3K4 demethylase, KDM5B, was shown to be amplified and overexpressed in luminal breast cancer, suggesting it might constitute a potential cancer therapy target. Here, we characterize, in breast cancer cells, the molecular effects of a recently developed small-molecule inhibitor of the KDM5 family of proteins, either alone, or in combination with the DNA demethylating agent 5-aza-2’ deoxycytidine (DAC). Alone, the KDM5 inhibitor (KDM5i) increased expression of a small number of genes, but when combined with DAC, the drug enhanced the effects of the latter for increasing expression of hundreds of DAC responsive genes. ChIP-seq studies revealed that KDM5i resulted in the broadening of existing, and creation of thousands of new H3K4me3 domains. When compared to DAC alone, increased promoter and gene body H3K4me3 occupancy at DAC responsive genes was observed in cells treated with the drug combination. Importantly, treatment with either DAC or DAC+KDM5i induced a dramatic increase in H3K27ac at enhancers with an associated significant increase in target gene expression, suggesting a previously unappreciated effect of DAC on transcriptional regulation. Finally, we found that KDM5i could synergize with DAC to reduce the viability of luminal breast cancer cells in in-vitro assays. Our study provides the first look into the molecular effects of novel KDM5i compounds and suggests that combining these with DAC may represent an exciting new approach to epigenetic therapy.
Project description:These subjects were diagnosed as being controls or having interstitial lung disease (ILD) or chronic obstructive pulmonary disease (COPD) as determined by clinical history, CT scan, and surgical pathology. There was no intervention, these are cross-sectional data. All samples are from the Lung Tissue Research Consortium (LTRC) and are indexed by their LTRC tissue label.
Project description:Aberrant hypermethylation of CpG dinucleotides located in CpG islands within the promoters of key cancer genes is an epigenetic abnormality associated with heritable transcriptional gene silencing and inactivation in cancer. The genes involved include important tumor suppressors affecting key pathways for tumor initiation and progression. These methylated sequences can serve as potentially valuable markers for cancer risk assessment, diagnosis, prognosis, and prediction of therapeutic responses. In addition, many key cancer genes may be targeted by both epigenetic and genetic alterations and, thus epigenetic analysis can help focus the search for mutations, and vice versa. Studies of major cancer types suggest that any individual patient’s tumor may harbor at least 300 or more DNA hypermethylated genes. In TCGA, a pilot project is underway to begin defining these genes for GBM via genomic approaches. The approach in the epigenetic pilot is a two-tiered one which, first, involves pharmacological treatment of both well established human GBM cell lines, and a cell line grown as a neurosphere to enrich for tumor propagating cells, with a DNA methylation inhibitor (5-aza-2’-deoxycytidine, DAC) or a histone deacetylation inhibitor (trichostatin A) followed by an expression transcriptome analysis as previously described (Schuebel et. al.). This has resulted in identification of more than 3,700 total candidate genes. In the second tier, the top candidates are then analyzed on a custom Illumina GoldenGate array with the capacity to monitor methylation at a single CpG dinucleotide in the CpG islands of 1,498 gene promoters for the high throughput analysis of TCGA GBM samples. Keywords: Microarray, Hypermethylome, DNA-hypermethylation, DAC, TSA, Epigenetic, TCGA, The Cancer Genome Atlas, GBM, Glioblastoma, Glioblastoma multiforme, Brain