Project description:Bacterial isolation in infected brains in patients with Huntington's disease. Here we used next generation sequencing of 16S ribosomal RNA gene PCR amplicons (NGS 16S amplicon analysis)
Project description:Isolation of bacteria in infected brains in patients with Parkinson's disease. Here we used next generation sequencing of 16S ribosomal RNA gene PCR amplicons (NGS 16S amplicon analysis).
Project description:Evaluation of transcriptional changes in the striatum may be an effective approach to understanding the natural history of changes in expression contributing to the pathogenesis of Huntington disease (HD). We have performed genome-wide expression profiling of the YAC128 transgenic mouse model of HD at 12 and 24 months of age using two platforms in parallel; Affymetrix and Illumina. We performed gene expression profiling on the same striatal mRNA across both platforms. Transgenic mice expressing human HD huntingtin with 120 CAG repeats (YAC128) and wildtype littermates were used for the described experiments. The mice were group housed in polystyrene cages under a normal light-dark cycle (6 am to 8 pm) in a clean facility and with free access to water and standard rodent chow. All experiments were performed in accordance with the University of British Columbia animal care committee. Striatal tissue was collected from 12 and 24 month old YAC128 mice and wildtype littermates.
Project description:Huntington's disease (HD) is a fatal degenerative disorder affecting the nervous system. It is characterized by motor, cognitive, and psychiatric dysfunctions, with a late onset and an autosomal dominant pattern of inheritance. HD-causing mutation consists in an expansion of repeated CAG triplets in the huntingtin gene (HTT), encoding for an expanded polyglutamine (polyQ) stretch in the huntingtin protein (htt). The mutation causes neuronal dysfunction and loss through multiple mechanisms, affecting both the nucleus and cytoplasm. P2X7 receptor (P2X7R) emerged as a major player in neuroinflammation, since ATP - its endogenous ligand - is massively released under this condition. Indeed, P2X7R stimulation in the central nervous system (CNS) is known to enhance the release of pro-inflammatory cytokines from microglia and of neurotransmitters from neuronal presynaptic terminals, as well as to promote apoptosis. Previous experiments performed with neurons expressing the mutant huntingtin and exploiting HD mouse models demonstrated a role of P2X7R in HD. On the basis of those results, here, we explore for the first time the status of P2X7R in HD patients' brain. We report that in HD postmortem striatum, as earlier observed in HD mice, the protein levels of the full-length form of P2X7R, also named P2X7R-A, are upregulated. In addition, the exclusively human naturally occurring variant lacking the C-terminus region, P2X7R-B, is upregulated as well. As we show here, this augmented protein levels can be explained by elevated mRNA levels. Furthermore, in HD patients' striatum, P2X7R shows not only an augmented total transcript level but also an alteration of its splicing. Remarkably, P2X7R introns 10 and 11 are more retained in HD patients when compared with controls. Taken together, our data confirm that P2X7R is altered in brains of HD subjects and strengthen the notion that P2X7R may represent a potential therapeutic target for HD.
Project description:Isolation of fungi in infected neural tissues in patients with Parkinson's disease. Here we used next generation sequencing of Internal Transcribed Spacer (ITS) regions, by PCR amplicons (NGS ITS amplicon analysis).
Project description:The pathogenesis of HD and HDL2, similar progressive neurodegenerative disorders caused by expansion mutations, remains incompletely understood. No systematic quantitative proteomics studies, assessing global changes in HD or HDL2 human brain, were reported. To address this deficit, we used a stable isotope labeling-based approach to quantify the changes in protein abundances in the cortex of 12 HD and 12 control cases and, separately, of 6 HDL2 and 6 control cases. The quality of the tissues was assessed to minimize variability due to post mortem autolysis. We applied a robust median sweep algorithm to quantify protein abundance and performed statistical inference using moderated test statistics. 1211 proteins showed statistically significant fold changes between HD and control tissues; the differences in selected proteins were verified by Western blotting. Differentially abundant proteins were enriched in cellular pathways previously implicated in HD, including Rho-mediated, actin cytoskeleton and integrin signaling, mitochondrial dysfunction, endocytosis, axonal guidance, DNA/RNA processing, and protein transport. The abundance of 717 proteins significantly differed between control and HDL2 brain. Comparative analysis of the disease-associated changes in the HD and HDL2 proteomes revealed that similar pathways were altered, suggesting the commonality of pathogenesis between the two disorders.
Project description:Massive sequencing of fungal DNA extracted from brain sections for 34 ELA and 22 Parkinson's disease patients. Fungal material was extracted from different brain regions.