Project description:High-grade serous ovarian cancer (HGSOC) harbours aberrant epigenetic features, including DNA methylation. In this study we delineate pathways and networks altered by DNA methylation and associated with HGSOC initiation and progression to a platinum-resistant state. By including tumours from patients who had been treated with the hypomethylating agent (HMA) guadecitabine, we also addressed the role of HMAs in treatment of HGSOC. Tumours from patients with primary (platinum-naïve) HGSOC (n = 20) were compared to patients with recurrent platinum-resistant HGSOC and enrolled in a recently completed clinical trial (NCT01696032). Human ovarian surface epithelial cells (HOSE; n = 5 samples) served as normal controls. Genome-wide methylation profiles were determined. DNA methyltransferase (DNMT) expression levels were examined by immunohistochemistry and correlated with clinical outcomes. Cancer-related and tumorigenesis networks were enriched among differentially methylated genes (DMGs) in primary OC vs. HOSE. When comparing platinum-resistant and primary tumours, 452 CpG island (CGI)-containing gene promoters acquired DNA methylation; of those loci, decreased (P < 0.01) methylation after HMA treatment was observed in 42% (n = 189 CGI). Stem cell pluripotency and cytokine networks were enriched in recurrent platinum-resistant OC tumours, while drug metabolism and transport-related networks were downregulated in tumours from HMA-treated patients compared to HOSE. Lower DNMT1 and 3B protein levels in pre-treatment tumours were associated with improved progression-free survival. The findings provide important insight into the DNA methylation landscape of HGSOC tumorigenesis, platinum resistance and epigenetic resensitization. Epigenetic reprogramming plays an important role in HGSOC aetiology and contributes to clinical outcomes.
Project description:Background: Resistance to platinum-based chemotherapy remains a major impediment in the treatment of serous epithelial ovarian cancer. The objective of this study was to use gene expression profiling to delineate major deregulated pathways and biomarkers associated with the development of intrinsic chemotherapy resistance upon exposure to standard first-line therapy for ovarian cancer. Methods: The study cohort comprised 28 patients divided into two groups based on their varying sensitivity to first-line chemotherapy using progression free survival (PFS) as a surrogate of response. All 28 patients had advanced stage, high-grade serous ovarian cancer, and were treated with the same standard platinum-based chemotherapy. Twelve patient tumors demonstrating relative resistance to platinum chemotherapy corresponding to shorter PFS (< eight months) were compared to sixteen tumors from platinum-sensitive patients (PFS > eighteen months). Whole transcriptome profiling was performed using a Affymetrix high-resolution microarray platform to permit global comparisons of gene expression profiles between tumors from the resistant group and the sensitive group. Results: Microarray data analysis revealed a set of 204 discriminating genes possessing expression levels, which could influence differential chemotherapy response between the two groups. Robust statistical testing was then performed which eliminated a dependence on the normalization algorithm employed, producing a restricted list of differentially regulated genes, and which found IGF1 to be the most strongly differentially expressed gene. Pathway analysis, based on the list of 204 genes, revealed enrichment in genes primarily involved in the IGF1/PI3K/NFκB/ERK gene signalling networks. Conclusions: This study has identified pathway specific prognostic biomarkers possibly underlying a differential chemotherapy response in patients undergoing standard platinum-based treatment of serous epithelial ovarian cancer. Future studies to validate these markers are necessary to apply this knowledge to biomarker-based clinical trials.
Project description:Background: Resistance to platinum-based chemotherapy remains a major impediment in the treatment of serous epithelial ovarian cancer. The objective of this study was to use gene expression profiling to delineate major deregulated pathways and biomarkers associated with the development of intrinsic chemotherapy resistance upon exposure to standard first-line therapy for ovarian cancer. Methods: The study cohort comprised 28 patients divided into two groups based on their varying sensitivity to first-line chemotherapy using progression free survival (PFS) as a surrogate of response. All 28 patients had advanced stage, high-grade serous ovarian cancer, and were treated with the same standard platinum-based chemotherapy. Twelve patient tumors demonstrating relative resistance to platinum chemotherapy corresponding to shorter PFS (< eight months) were compared to sixteen tumors from platinum-sensitive patients (PFS > eighteen months). Whole transcriptome profiling was performed using a Affymetrix high-resolution microarray platform to permit global comparisons of gene expression profiles between tumors from the resistant group and the sensitive group. Results: Microarray data analysis revealed a set of 204 discriminating genes possessing expression levels, which could influence differential chemotherapy response between the two groups. Robust statistical testing was then performed which eliminated a dependence on the normalization algorithm employed, producing a restricted list of differentially regulated genes, and which found IGF1 to be the most strongly differentially expressed gene. Pathway analysis, based on the list of 204 genes, revealed enrichment in genes primarily involved in the IGF1/PI3K/NFκB/ERK gene signalling networks. Conclusions: This study has identified pathway specific prognostic biomarkers possibly underlying a differential chemotherapy response in patients undergoing standard platinum-based treatment of serous epithelial ovarian cancer. Future studies to validate these markers are necessary to apply this knowledge to biomarker-based clinical trials. Total RNA from 12 chemotherapy resistant and 16 sensitive chemotherapy sensitive high-grade serous epithelial ovarian cancer samples was subjected to whole transcriptome profiling using Affymetrix U133 Plus 2.0 arrays
Project description:High-grade serous ovarian cancer (HGSOC) accounts for 70-80% of ovarian cancer deaths, and overall survival has not changed significantly for several decades. In this Opinion article, we outline a set of research priorities that we believe will reduce incidence and improve outcomes for women with this disease. This 'roadmap' for HGSOC was determined after extensive discussions at an Ovarian Cancer Action meeting in January 2015.
Project description:Patients with high-grade serous ovarian cancer suffer poor prognosis and variable response to treatment. Known prognostic factors for this disease include homologous recombination deficiency status, age, pathological stage and residual disease status after debulking surgery. Recent work has highlighted important prognostic information captured in computed tomography and histopathological specimens, which can be exploited through machine learning. However, little is known about the capacity of combining features from these disparate sources to improve prediction of treatment response. Here, we assembled a multimodal dataset of 444 patients with primarily late-stage high-grade serous ovarian cancer and discovered quantitative features, such as tumor nuclear size on staining with hematoxylin and eosin and omental texture on contrast-enhanced computed tomography, associated with prognosis. We found that these features contributed complementary prognostic information relative to one another and clinicogenomic features. By fusing histopathological, radiologic and clinicogenomic machine-learning models, we demonstrate a promising path toward improved risk stratification of patients with cancer through multimodal data integration.
Project description:To provide a detailed analysis of the molecular components and underlying mechanisms associated with ovarian cancer, we performed a comprehensive mass-spectrometry-based proteomic characterization of 174 ovarian tumors previously analyzed by The Cancer Genome Atlas (TCGA), of which 169 were high-grade serous carcinomas (HGSCs). Integrating our proteomic measurements with the genomic data yielded a number of insights into disease, such as how different copy-number alternations influence the proteome, the proteins associated with chromosomal instability, the sets of signaling pathways that diverse genome rearrangements converge on, and the ones most associated with short overall survival. Specific protein acetylations associated with homologous recombination deficiency suggest a potential means for stratifying patients for therapy. In addition to providing a valuable resource, these findings provide a view of how the somatic genome drives the cancer proteome and associations between protein and post-translational modification levels and clinical outcomes in HGSC. VIDEO ABSTRACT.
Project description:BACKGROUND:Median overall survival (OS) for women with high-grade serous ovarian cancer (HGSOC) is ?4 years, yet survival varies widely between patients. There are no well-established, gene expression signatures associated with prognosis. The aim of this study was to develop a robust prognostic signature for OS in patients with HGSOC. PATIENTS AND METHODS:Expression of 513 genes, selected from a meta-analysis of 1455 tumours and other candidates, was measured using NanoString technology from formalin-fixed paraffin-embedded tumour tissue collected from 3769 women with HGSOC from multiple studies. Elastic net regularization for survival analysis was applied to develop a prognostic model for 5-year OS, trained on 2702 tumours from 15 studies and evaluated on an independent set of 1067 tumours from six studies. RESULTS:Expression levels of 276 genes were associated with OS (false discovery rate < 0.05) in covariate-adjusted single-gene analyses. The top five genes were TAP1, ZFHX4, CXCL9, FBN1 and PTGER3 (P < 0.001). The best performing prognostic signature included 101 genes enriched in pathways with treatment implications. Each gain of one standard deviation in the gene expression score conferred a greater than twofold increase in risk of death [hazard ratio (HR) 2.35, 95% confidence interval (CI) 2.02-2.71; P < 0.001]. Median survival [HR (95% CI)] by gene expression score quintile was 9.5 (8.3 to -), 5.4 (4.6-7.0), 3.8 (3.3-4.6), 3.2 (2.9-3.7) and 2.3 (2.1-2.6) years. CONCLUSION:The OTTA-SPOT (Ovarian Tumor Tissue Analysis consortium - Stratified Prognosis of Ovarian Tumours) gene expression signature may improve risk stratification in clinical trials by identifying patients who are least likely to achieve 5-year survival. The identified novel genes associated with the outcome may also yield opportunities for the development of targeted therapeutic approaches.
Project description:Purpose of reviewEpithelial ovarian cancer is a disease that encompasses a number of histologically and molecularly distinct entities; the most prevalent subtype being high-grade serous (HGS) carcinoma. Standard first-line treatment of advanced HGS carcinoma includes cytoreductive surgery plus intravenous paclitaxel/platinum-based chemotherapy. Despite excellent responses to initial treatment, the majority of patients develop recurrent disease within 3 years. The introduction of the vascular endothelial growth factor (VEGF) inhibitor, bevacizumab, and poly(ADP-ribose) polymerase (PARP) inhibitors into first-line management has changed the outlook for this lethal disease. In this review, we summarise the most recent clinical trials that determine current primary therapy of advanced HGS carcinoma and the ongoing trials that aim to change management in the future.Recent findingsRecent phase III clinical trials have shown that delayed primary surgery after completing neo-adjuvant chemotherapy is non-inferior to immediate primary surgery, but could provide a survival benefit in FIGO (International Federation of Gynecology and Obstetrics) stage IV disease. The use of weekly intravenous chemotherapy regimens has not been proven to be more effective than standard 3-weekly regimens in Western patient populations, and the use of intraperitoneal chemotherapy remains controversial in the first-line setting. In contrast, newer systemic anti-cancer therapies targeting angiogenesis and/or HR-deficient tumours have been successfully incorporated into front-line therapeutic regimens to treat HGS carcinoma. Recent results from randomised trials investigating the use of PARP inhibitors as monotherapy and in combination with the anti-angiogenic agent, bevacizumab, have demonstrated highly impressive efficacy when combined with traditional first-line multi-modality therapy. Management of HGS carcinoma is evolving, but further work is still required to optimise and integrate tumour and plasma biomarkers to exploit the potential of these highly efficacious targeted agents.
Project description:Malignant abdominal fluid (ascites) frequently develops in women with advanced high-grade serous ovarian cancer (HGSOC) and is associated with drug resistance and a poor prognosis1. To comprehensively characterize the HGSOC ascites ecosystem, we used single-cell RNA sequencing to profile ~11,000 cells from 22 ascites specimens from 11 patients with HGSOC. We found significant inter-patient variability in the composition and functional programs of ascites cells, including immunomodulatory fibroblast sub-populations and dichotomous macrophage populations. We found that the previously described immunoreactive and mesenchymal subtypes of HGSOC, which have prognostic implications, reflect the abundance of immune infiltrates and fibroblasts rather than distinct subsets of malignant cells2. Malignant cell variability was partly explained by heterogeneous copy number alteration patterns or expression of a stemness program. Malignant cells shared expression of inflammatory programs that were largely recapitulated in single-cell RNA sequencing of ~35,000 cells from additionally collected samples, including three ascites, two primary HGSOC tumors and three patient ascites-derived xenograft models. Inhibition of the JAK/STAT pathway, which was expressed in both malignant cells and cancer-associated fibroblasts, had potent anti-tumor activity in primary short-term cultures and patient-derived xenograft models. Our work contributes to resolving the HSGOC landscape3-5 and provides a resource for the development of novel therapeutic approaches.
Project description:PURPOSE:Poly(ADP-ribose) polymerase inhibitors (PARPi) have changed the management of high-grade serous ovarian cancer (HGSOC). The rationale for the development of PARPi was based on the concept of synthetic lethality, in which a cell can survive a deficiency of one gene/gene product, but may die if there is a deficiency in a combination of genes/gene products. In women with BRCA1/2 deficiency within their ovarian cancer tissue, inhibition of PARP imposes an intolerable burden of DNA damage repair deficiency and may induce cell death. METHODS:Clinical trials have evaluated PARPi as single-agent therapeutics and as maintenance treatment following platinum-based chemotherapy for HGSOC. Clinical data suggest the most impressive anti-tumour activity occurs in women with platinum-sensitive ovarian cancer and germline or somatic BRCA1/2 mutations (g/sBRCAmt). RESULTS:In the maintenance setting, randomised trials have shown that PARPi compared to placebo reduce the hazard ratio for the development of progressive disease to 0.2-0.27 for patients with a g/sBRCAmt; to 0.34-0.38 for patients with putative evidence of DNA damage repair deficiency; and to 0.35-0.45 in an unselected population with HGSOC. Furthermore, phase 1/2 trials have reported single-agent anti-tumour response rates in gBRCAmt of approximately 50% in platinum-sensitive and 25% in platinum-resistant disease. CONCLUSION:Here, we discuss the evidence for the use of PARPi as single-agent therapeutics and maintenance treatment in HGSOC and evaluate the genetic assays used in clinical trials so far. We discuss the emerging role of platinum sensitivity as a broad eligibility criteria for the use of PARPi.