Project description:This experiment contains a subset of data from the BLUEPRINT Epigenome project ( http://www.blueprint-epigenome.eu ), which aims at producing a reference haemopoetic epigenomes for the research community. 29 samples of primary cells or cultured primary cells of different haemopoeitc lineages from cord blood are included in this experiment. This ArrayExpress record contains only meta-data. Raw data files have been archived at the European Genome-Phenome Archive (EGA, www.ebi.ac.uk/ega) by the consortium, with restricted access to protect sample donors' identity. The relevant accessions of EGA data sets is EGAD00001001165. Details on how to apply for data access via the BLUEPRINT data access committee are on the EGA data set pages. The mapping of samples to these EGA accessions can be found in the 'Sample Data Relationship Format' file of this ArrayExpress record. Information on individual samples and sequencing libraries can also be found on the BLUEPRINT data coordination centre (DCC) website: http://dcc.blueprint-epigenome.eu
Project description:This experiment contains a subset of data from the BLUEPRINT Epigenome project ( http://www.blueprint-epigenome.eu ), which aims at producing a reference haemopoetic epigenomes for the research community. 4 samples of primary cells from tonsil with cell surface markes CD20med/CD38high in young individuals (3 to 10 years old) are included in this experiment. This ArrayExpress record contains only meta-data. Raw data files have been archived at the European Genome-Phenome Archive (EGA, www.ebi.ac.uk/ega) by the consortium, with restricted access to protect sample donors' identity. The relevant accessions of EGA data sets is EGAD00001001523. Details on how to apply for data access via the BLUEPRINT data access committee are on the EGA data set pages. The mapping of samples to these EGA accessions can be found in the 'Sample Data Relationship Format' file of this ArrayExpress record. Information on individual samples and sequencing libraries can also be found on the BLUEPRINT data coordination centre (DCC) website: http://dcc.blueprint-epigenome.eu
Project description:This experiment contains a subset of data from the BLUEPRINT Epigenome project ( http://www.blueprint-epigenome.eu ), which aims at producing a reference haemopoetic epigenomes for the research community. 74 samples of primary cells or cultured primary cells of different haemopoeitc lineages from cord blood, venous blood, bone marrow and thymus are included in this experiment. This ArrayExpress record contains only meta-data. Raw data files have been archived at the European Genome-Phenome Archive (EGA, www.ebi.ac.uk/ega) by the consortium, with restricted access to protect sample donors' identity. There are 32 EGA data set accessions, which can be found under the Comment[EGA_DATA_SET] column in the 'Sample Data Relationship Format' (SDRF) file of this ArrayExpress record (http://www.ebi.ac.uk/arrayexpress/files/E-MTAB-3827/E-MTAB-3827.sdrf.txt). Details on how to apply for data access via the BLUEPRINT data access committee are on the EGA data set pages. Likewise, mapping of samples to these EGA accessions can be found in the SDRF file. Please note that the raw data files for 11 sequencing runs have yet been deposited at EGA, so they are marked with \\ot available\\ under the Comment[SUBMITTED_FILE_NAME] field in the SDRF file, and were included for the sake of completeness. Further iInformation on individual samples and sequencing libraries can also be found on the BLUEPRINT data coordination centre (DCC) website: http://dcc.blueprint-epigenome.eu\
Project description:Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy that resists current treatments. To test epigenetic therapy against this cancer we used the DNA demethylating drug 5-aza-2’-deoxycytidine (DAC) in a KrasLSL-G12D; p53LSL-R270H/+; Pdx1-cre; Brca1flex2/flex2 (KPC-Brca1) mouse model of aggressive stroma-rich PDAC. In untreated tumors, we found globally decreased 5-methyl-cytosine (5mC) in malignant epithelial cells and in cancer-associated myofibroblasts (CAFs), and increased amounts of 5-hydroxymethyl-cytosine (5HmC) in CAFs, in progression from pancreatic intraepithelial neoplasia (PanIN) to PDAC. DAC further reduced DNA methylation and slowed PDAC progression, markedly extending survival in an early treatment protocol and significantly though transiently inhibiting tumor growth when initiated later, without adverse side effects. Escaping tumors contained areas of sarcomatoid transformation with disappearance of CAFs. Mixing-allografting experiments and proliferation indices showed that DAC efficacy was due to inhibition of both the malignant epithelial cells and the stromal CAFs. Expression profiling and immunohistochemistry highlighted DAC-induction of STAT1 in the tumors, and DAC plus gamma-interferon produced an additive anti-proliferative effect on PDAC cells. DAC induced strong expression of the testis antigen DAZL in CAFs. These data show that DAC is effective against PDAC in vivo and provide a rationale for future studies combining hypomethylating agents with cytokines and immunotherapy. Treatment of a short-term explant culture of malignant epithelial cells from a KPC-Brca1 mouse pancreatic carcinoma, with 0.5 micromolar 5-aza-dC (decitabine; DAC) for 48 hours. The experiment includes 3 replicate plates untreated and 3 replicates treated.
Project description:Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy that resists current treatments. To test epigenetic therapy against this cancer we used the DNA demethylating drug 5-aza-2’-deoxycytidine (DAC) in a KrasLSL-G12D; p53LSL-R270H/+; Pdx1-cre; Brca1flex2/flex2 (KPC-Brca1) mouse model of aggressive stroma-rich PDAC. In untreated tumors, we found globally decreased 5-methyl-cytosine (5mC) in malignant epithelial cells and in cancer-associated myofibroblasts (CAFs), and increased amounts of 5-hydroxymethyl-cytosine (5HmC) in CAFs, in progression from pancreatic intraepithelial neoplasia (PanIN) to PDAC. DAC further reduced DNA methylation and slowed PDAC progression, markedly extending survival in an early treatment protocol and significantly though transiently inhibiting tumor growth when initiated later, without adverse side effects. Escaping tumors contained areas of sarcomatoid transformation with disappearance of CAFs. Mixing-allografting experiments and proliferation indices showed that DAC efficacy was due to inhibition of both the malignant epithelial cells and the stromal CAFs. Expression profiling and immunohistochemistry highlighted DAC-induction of STAT1 in the tumors, and DAC plus gamma-interferon produced an additive anti-proliferative effect on PDAC cells. DAC induced strong expression of the testis antigen DAZL in CAFs. These data show that DAC is effective against PDAC in vivo and provide a rationale for future studies combining hypomethylating agents with cytokines and immunotherapy. Treatment of a short-term explant culture of cancer-associated fibroblasts (CAFs) from a KPC-Brca1 mouse pancreatic carcinoma, with 2 micromolar 5-aza-dC (decitabine; DAC) for 48 hours. The experiment includes 3 replicate plates untreated and 3 replicates treated.
Project description:We observed gene expression difference between different groups after MDA-MB-231 treated with DMSO, 10 μM DAC, 1 μM DEX, or DAC+DEX. Data obtained from high-throughput sequencing (Illumina NovaSeq 6000 platform) were transformed into raw sequenced reads by CASAVA base calling and stored in FASTQ format. Gene expression of each groups are listed in raw data files. Some different expression genes between two groups are further validated with qRT-PCR.
Project description:Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy that resists current treatments. To test epigenetic therapy against this cancer we used the DNA demethylating drug 5-aza-2’-deoxycytidine (DAC) in a KrasLSL-G12D; p53LSL-R270H/+; Pdx1-cre; Brca1flex2/flex2 (KPC-Brca1) mouse model of aggressive stroma-rich PDAC. In untreated tumors, we found globally decreased 5-methyl-cytosine (5mC) in malignant epithelial cells and in cancer-associated myofibroblasts (CAFs), and increased amounts of 5-hydroxymethyl-cytosine (5HmC) in CAFs, in progression from pancreatic intraepithelial neoplasia (PanIN) to PDAC. DAC further reduced DNA methylation and slowed PDAC progression, markedly extending survival in an early treatment protocol and significantly though transiently inhibiting tumor growth when initiated later, without adverse side effects. Escaping tumors contained areas of sarcomatoid transformation with disappearance of CAFs. Mixing-allografting experiments and proliferation indices showed that DAC efficacy was due to inhibition of both the malignant epithelial cells and the stromal CAFs. Expression profiling and immunohistochemistry highlighted DAC-induction of STAT1 in the tumors, and DAC plus gamma-interferon produced an additive anti-proliferative effect on PDAC cells. DAC induced strong expression of the testis antigen DAZL in CAFs. These data show that DAC is effective against PDAC in vivo and provide a rationale for future studies combining hypomethylating agents with cytokines and immunotherapy.
Project description:Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy that resists current treatments. To test epigenetic therapy against this cancer we used the DNA demethylating drug 5-aza-2’-deoxycytidine (DAC) in a KrasLSL-G12D; p53LSL-R270H/+; Pdx1-cre; Brca1flex2/flex2 (KPC-Brca1) mouse model of aggressive stroma-rich PDAC. In untreated tumors, we found globally decreased 5-methyl-cytosine (5mC) in malignant epithelial cells and in cancer-associated myofibroblasts (CAFs), and increased amounts of 5-hydroxymethyl-cytosine (5HmC) in CAFs, in progression from pancreatic intraepithelial neoplasia (PanIN) to PDAC. DAC further reduced DNA methylation and slowed PDAC progression, markedly extending survival in an early treatment protocol and significantly though transiently inhibiting tumor growth when initiated later, without adverse side effects. Escaping tumors contained areas of sarcomatoid transformation with disappearance of CAFs. Mixing-allografting experiments and proliferation indices showed that DAC efficacy was due to inhibition of both the malignant epithelial cells and the stromal CAFs. Expression profiling and immunohistochemistry highlighted DAC-induction of STAT1 in the tumors, and DAC plus gamma-interferon produced an additive anti-proliferative effect on PDAC cells. DAC induced strong expression of the testis antigen DAZL in CAFs. These data show that DAC is effective against PDAC in vivo and provide a rationale for future studies combining hypomethylating agents with cytokines and immunotherapy.