Project description:ObjectiveReport long-term tracheostomy outcomes in patients with COVID-19.Study designReview of prospectively collected data.MethodsProspectively collected data were extracted for adults with COVID-19 undergoing percutaneous or open tracheostomy between April 4, 2020 and June 2, 2020 at a major medical center in New York City. The primary endpoint was weaning from mechanical ventilation. Secondary outcomes included sedation weaning, decannulation, and discharge.ResultsOne hundred one patients underwent tracheostomy, including 48 percutaneous (48%) and 53 open (52%), after a median intubation time of 24 days (IQR 20, 31). The most common complication was minor bleeding (n = 18, 18%). The all-cause mortality rate was 15% and no deaths were attributable to the tracheostomy. Eighty-three patients (82%) were weaned off mechanical ventilation, 88 patients (87%) were weaned off sedation, and 72 patients (71%) were decannulated. Censored median times from tracheostomy to sedation and ventilator weaning were 8 (95% CI 6-11) and 18 (95% CI 14-22) days, respectively (uncensored: 7 and 15 days). Median time from tracheostomy to decannulation was 36 (95% CI 32-47) days (uncensored: 32 days). Of those decannulated, 82% were decannulated during their index admission. There were no differences in outcomes or complication rates between percutaneous and open tracheostomy. Likelihood of discharge from the ICU was inversely related to intubation time, though the clinical relevance of this was small (HR 0.97, 95% CI 0.943-0.998; P = .037).ConclusionTracheostomy by either percutaneous or open technique facilitated sedation and ventilator weaning in patients with COVID-19 after prolonged intubation. Additional study on the optimal timing of tracheostomy in patients with COVID-19 is warranted.Level of evidence3 Laryngoscope, 131:E2849-E2856, 2021.
Project description:JIMT-1 and T-47D cell lines, were transfected with a DCK expression vector and exposed to low-dose decitabine (DAC). DAC, a DNA methyltransferase (DNMT) inhibitor, is tested in combination with conventional anticancer drugs as a treatment option for various solid tumors.
Project description:Prostate cancer is the second most common cancer in men and affects 1 in 9 men in the United States. Early screening for prostate cancer often involves monitoring levels of prostate-specific antigen (PSA) and performing digital rectal exams. However, a prostate biopsy is always required for definitive cancer diagnosis. The Early Detection Research Network (EDRN) is a consortium within the National Cancer Institute aimed at improving screening approaches and early detection of cancers. As part of this effort, the Weill Cornell EDRN Prostate Cancer has collected and biobanked specimens from men undergoing a prostate biopsy between 2008 and 2017. In this report, we describe blood metabolomics measurements for a subset of this population. The dataset includes detailed clinical and prospective records for 580 patients who underwent prostate biopsy, 287 of which were subsequentially diagnosed with prostate cancer, combined with profiling of 1,482 metabolites from plasma samples collected at the time of biopsy. We expect this dataset to provide a valuable resource for scientists investigating prostate cancer metabolism.