Project description:This experiment contains a subset of data from the BLUEPRINT Epigenome project ( http://www.blueprint-epigenome.eu ), which aims at producing a reference haemopoetic epigenomes for the research community. 29 samples of primary cells or cultured primary cells of different haemopoeitc lineages from cord blood are included in this experiment. This ArrayExpress record contains only meta-data. Raw data files have been archived at the European Genome-Phenome Archive (EGA, www.ebi.ac.uk/ega) by the consortium, with restricted access to protect sample donors' identity. The relevant accessions of EGA data sets is EGAD00001001165. Details on how to apply for data access via the BLUEPRINT data access committee are on the EGA data set pages. The mapping of samples to these EGA accessions can be found in the 'Sample Data Relationship Format' file of this ArrayExpress record. Information on individual samples and sequencing libraries can also be found on the BLUEPRINT data coordination centre (DCC) website: http://dcc.blueprint-epigenome.eu
Project description:This experiment contains a subset of data from the BLUEPRINT Epigenome project ( http://www.blueprint-epigenome.eu ), which aims at producing a reference haemopoetic epigenomes for the research community. 4 samples of primary cells from tonsil with cell surface markes CD20med/CD38high in young individuals (3 to 10 years old) are included in this experiment. This ArrayExpress record contains only meta-data. Raw data files have been archived at the European Genome-Phenome Archive (EGA, www.ebi.ac.uk/ega) by the consortium, with restricted access to protect sample donors' identity. The relevant accessions of EGA data sets is EGAD00001001523. Details on how to apply for data access via the BLUEPRINT data access committee are on the EGA data set pages. The mapping of samples to these EGA accessions can be found in the 'Sample Data Relationship Format' file of this ArrayExpress record. Information on individual samples and sequencing libraries can also be found on the BLUEPRINT data coordination centre (DCC) website: http://dcc.blueprint-epigenome.eu
Project description:This experiment contains a subset of data from the BLUEPRINT Epigenome project ( http://www.blueprint-epigenome.eu ), which aims at producing a reference haemopoetic epigenomes for the research community. 74 samples of primary cells or cultured primary cells of different haemopoeitc lineages from cord blood, venous blood, bone marrow and thymus are included in this experiment. This ArrayExpress record contains only meta-data. Raw data files have been archived at the European Genome-Phenome Archive (EGA, www.ebi.ac.uk/ega) by the consortium, with restricted access to protect sample donors' identity. There are 32 EGA data set accessions, which can be found under the Comment[EGA_DATA_SET] column in the 'Sample Data Relationship Format' (SDRF) file of this ArrayExpress record (http://www.ebi.ac.uk/arrayexpress/files/E-MTAB-3827/E-MTAB-3827.sdrf.txt). Details on how to apply for data access via the BLUEPRINT data access committee are on the EGA data set pages. Likewise, mapping of samples to these EGA accessions can be found in the SDRF file. Please note that the raw data files for 11 sequencing runs have yet been deposited at EGA, so they are marked with \\ot available\\ under the Comment[SUBMITTED_FILE_NAME] field in the SDRF file, and were included for the sake of completeness. Further iInformation on individual samples and sequencing libraries can also be found on the BLUEPRINT data coordination centre (DCC) website: http://dcc.blueprint-epigenome.eu\
Project description:Changing food preferences brought about by westernization that have deleterious health effects1,2-combined with myriad forces that are contributing to increased food insecurity-are catalysing efforts to identify more nutritious and affordable foods3. Consumption of dietary fibre can help to prevent cardiovascular disease, type 2 diabetes and obesity4-6. A substantial number of reports have explored the effects of dietary fibre on the gut microbial community7-9. However, the microbiome is complex, dynamic and exhibits considerable intra- and interpersonal variation in its composition and functions. The large number of potential interactions between the components of the microbiome makes it challenging to define the mechanisms by which food ingredients affect community properties. Here we address the question of how foods containing different fibre preparations can be designed to alter functions associated with specific components of the microbiome. Because a marked increase in snack consumption is associated with westernization, we formulated snack prototypes using plant fibres from different sustainable sources that targeted distinct features of the gut microbiomes of individuals with obesity when transplanted into gnotobiotic mice. We used these snacks to supplement controlled diets that were consumed by adult individuals with obesity or who were overweight. Fibre-specific changes in their microbiomes were linked to changes in their plasma proteomes indicative of an altered physiological state.
Project description:In this study, we investigated somatic mutations in T cells in patients with various hematological disorders. To analyze immune cell phenotypes with somatic mutations, we performed scRNA+TCRab sequencing from 9 patients with chronic GVHD and clonal expansions of CD4+ or CD8+ T cells based on T cell receptor sequencing. CD45+ PBMCs (lymphocytes and monocytes) were sorted with BD Influx cell sorter and subjected to sequencing with Chromium VDJ and Gene Expression platform (v1.1, 10X Genomics). Sequencing was performed with Novaseq 6000 (Illumina). The immune cell phenotypes were compared to healthy controls processed in the same laboratory (accession number E-MTAB-11170). Due to data privacy concerns, the raw sequencing data is in the European Genome-Phenome Archive (EGA) under accession code [xxxx] and can be requested through the EGA Data Access Committee.
Project description:Knowledge of the interrelationships between what we eat and the configurations of our gut microbial communities is providing important insights into how food components that are not directly metabolized by human enzymes are linked to our physiology and health status. Changing food preferences brought about by Westernization that have deleterious health effects1,2, plus rapid population expansion, ongoing challenges to sustainable agriculture, and other forces contributing to increased food insecurity, are catalyzing efforts to identify more nutritious and affordable foods3. The gut microbial community is complex, dynamic, and exhibits considerable intra- and interpersonal variation in its composition and functions. The massive number of potential interactions between its components makes it challenging to define the mechanisms by which food ingredients affect community properties. There is also a paucity of information about the ‘bioactive’ ingredients of foods that influence the fitness and expressed functions of community members. Here, plant fibres, from different sustainable sources and targeting distinct features of obese human gut microbiomes in gnotobiotic mice, were formulated into snack prototypes and used to supplement controlled diets consumed by overweight and obese adults; the results revealed fibre-specific changes in their microbiomes that were linked to changes in their plasma proteomes indicative of altered physiologic state.
Project description:CTCF ChIP-seq of 39 primary samples derived from human acute leukemias, namely AML, T-ALL and mixed myeloid/lymphoid leukemias with CpG Island Methylator Phenotype (CIMP). Due to patient confidentiality considerations, the raw data files for this dataset have been deposited to the EGA controlled-access archive under the accession numbers EGAS00001007094 (study); EGAD00001011059 (dataset).
Project description:H3K27ac ChIP-seq of 79 primary samples derived from human acute leukemias, namely AML, T-ALL and mixed myeloid/lymphoid leukemias with CpG Island Methylator Phenotype (CIMP). In addition, 4 samples derived from CD34+ cord blood cells of healthy donors were included. Due to patient confidentiality considerations, the raw data files for this dataset have been deposited to the EGA controlled-access archive under the accession numbers EGAS00001007094 (study); EGAD00001011060 (dataset).