Project description:To date, only some cancer patients can benefit from chemotherapy and targeted therapy. Drug resistance continues to be a major and challenging problem facing current cancer research. Rapidly accumulated patient-derived clinical transcriptomic data with cancer drug response bring opportunities for exploring molecular determinants of drug response, but meanwhile pose challenges for data management, integration, and reuse. Here we present the Cancer Treatment Response gene signature DataBase (CTR-DB, http://ctrdb.ncpsb.org.cn/), a unique database for basic and clinical researchers to access, integrate, and reuse clinical transcriptomes with cancer drug response. CTR-DB has collected and uniformly reprocessed 83 patient-derived pre-treatment transcriptomic source datasets with manually curated cancer drug response information, involving 28 histological cancer types, 123 drugs, and 5139 patient samples. These data are browsable, searchable, and downloadable. Moreover, CTR-DB supports single-dataset exploration (including differential gene expression, receiver operating characteristic curve, functional enrichment, sensitizing drug search, and tumor microenvironment analyses), and multiple-dataset combination and comparison, as well as biomarker validation function, which provide insights into the drug resistance mechanism, predictive biomarker discovery and validation, drug combination, and resistance mechanism heterogeneity.
Project description:Gene expression signatures (GES) connect phenotypes to differential messenger RNA (mRNA) expression of genes, providing a powerful approach to define cellular identity, function, and the effects of perturbations. The use of GES has suffered from vague assessment criteria and limited reproducibility. Because the structure of proteins defines the functional capability of genes, we hypothesized that enrichment of structural features could be a generalizable representation of gene sets. We derive structural gene expression signatures (sGES) using features from multiple levels of protein structure (e.g., domain and fold) encoded by the mRNAs in GES. Comprehensive analyses of data from the Genotype-Tissue Expression Project (GTEx), the all RNA-seq and ChIP-seq sample and signature search (ARCHS4) database, and mRNA expression of drug effects on cardiomyocytes show that sGES are useful for characterizing biological phenomena. sGES enable phenotypic characterization across experimental platforms, facilitates interoperability of expression datasets, and describe drug action on cells.
Project description:Genome wide DNA methylation profiling of AML patient samples treated with PBS or DAC. The Illumina Infinium 450 Human DNA methylation was used to examine the methylation profile of 8 patient samples and 2 cell lines. Genome wide DNA methylation profiling of AML xenografts treated with either PBS control or with decitacine (DAC) alone, cytarabine (Ara-C) alone, DAC and Ara-C together (D+A), DAC followed by Ara-C (D/A) or with Ara-C followed by DAC (A/D).
Project description:Acid sphingomyelinase deficiency (ASMD) or Niemann-Pick disease type A (NPA), type B (NPB) and type A/B (NPA/B), is a rare lysosomal storage disease characterized by progressive accumulation of sphingomyelin (SM) in the liver, lungs, bone marrow and, in severe cases, neurons. A disease model was established by generating liver organoids from a NPB patient carrying the p.Arg610del variant in the SMPD1 gene. Liver organoids were characterized by transcriptomic and lipidomic analysis. We observed altered lipid homeostasis in the patient-derived organoids showing the predictable increase in sphingomyelin (SM), together with cholesterol esters (CE) and triacylglycerides (TAG), and a reduction in phosphatidylcholine (PC) and cardiolipins (CL). Analysis of lysosomal gene expression pointed to 24 downregulated genes, including SMPD1, and 26 upregulated genes that reflect the lysosomal stress typical of the disease. Altered genes revealed reduced expression of enzymes that could be involved in the accumulation in the hepatocytes of sphyngoglycolipids and glycoproteins, as well as upregulated genes coding for different glycosidases and cathepsins. Lipidic and transcriptome changes support the use of hepatic organoids as ideal models for ASMD investigation.
Project description:RATIONALE: Diagnostic imaging procedures, such as fludeoxyglucose F 18 PET, may be effective in detecting cancer or recurrence of cancer, or premalignant polyps.
PURPOSE: This clinical trial is studying fludeoxyglucose F 18-PET imaging to see how well it works in determining protein and gene expression signatures in patients with premalignant polyps or colon cancer.
Project description:N-Glycanase 1 (NGLY1) deficiency is a rare and complex genetic disorder. Although recent studies have shed light on the molecular underpinnings of NGLY1 deficiency, a systematic characterization of gene and protein expression changes in patient-derived cells has been lacking. Here, we performed RNA-sequencing and mass spectrometry to determine the transcriptomes and proteomes of 66 cell lines representing 4 different cell types derived from 14 NGLY1 deficient patients and 17 controls. While gene and protein expression levels agreed well with each other, expression differences were more pronounced at the protein level. Although NGLY1 protein levels were up to 9.5-fold downregulated in patients compared to parent controls, depending on the genotype, NGLY1 protein was still detectable in all patient-derived lymphoblastoid cell lines. Consistent with the role of NGLY1 as a regulator of the transcription factor Nrf1, we observed a cell type-independent downregulation of proteasomal genes in NGLY1 deficient cells. In contrast, genes involved in ribosomal mRNA processing were upregulated in multiple cell types. In addition, we observed cell type-specific effects. For example, genes and proteins involved in glutathione synthesis, such as the glutamate-cystein ligase subunits GCLC and GCLM, were downregulated specifically in lymphoblastoid cells. We provide a web application that enables access to all results generated in this study at https://apps.embl.de/ngly1browser. This resource will guide future studies of NGLY1 deficiency in directions that are most relevant to patients.
Project description:Genome wide DNA methylation profiling of AML patient samples treated with PBS or DAC. The Illumina Infinium 450 Human DNA methylation was used to examine the methylation profile of 8 patient samples and 2 cell lines. Genome wide DNA methylation profiling of AML xenografts treated with either PBS control or with decitacine (DAC) alone, cytarabine (Ara-C) alone, DAC and Ara-C together (D+A), DAC followed by Ara-C (D/A) or with Ara-C followed by DAC (A/D). DNA was extracted from patient bone marrow samples and xenograft bone marrow samples using Qiagen Allprep kit. Bisulphite converted DNA from all samples were hybridised to the Illumina Infinium 450 Human Methylation arrays and for each analysis the drug treated sample was compared to the corresponding PBS control sample.