Project description:BackgroundTuberculosis (TB) is a poverty-related disease that is associated with poor living conditions. We studied TB mortality and living conditions in Bern between 1856 and 1950.MethodsWe analysed cause-specific mortality based on mortality registers certified by autopsies, and public health reports 1856 to 1950 from the city council of Bern.ResultsTB mortality was higher in the Black Quarter (550 per 100,000) and in the city centre (327 per 100,000), compared to the outskirts (209 per 100,000 in 1911-1915). TB mortality correlated positively with the number of persons per room (r = 0.69, p = 0.026), the percentage of rooms without sunlight (r = 0.72, p = 0.020), and negatively with the number of windows per apartment (r = -0.79, p = 0.007). TB mortality decreased 10-fold from 330 per 100,000 in 1856 to 33 per 100,000 in 1950, as housing conditions improved, indoor crowding decreased, and open-air schools, sanatoria, systematic tuberculin skin testing of school children and chest radiography screening were introduced.ConclusionsImproved living conditions and public health measures may have contributed to the massive decline of the TB epidemic in the city of Bern even before effective antibiotic treatment became finally available in the 1950s.
Project description:Neural control of visceral organ function is essential for homeostasis and health. Intestinal peristalsis is critical for digestive physiology and host defence and is often dysregulated in gastrointestinal (GI) disorders. Luminal factors, such as diet and microbiota regulate neurogenic programs of gut motility, but the underlying molecular mechanisms remain unclear. Here we show that the transcription factor Aryl hydrocarbon Receptor (AhR) functions as a biosensor in intestinal neural circuits linking their functional output to the microbial environment of the gut lumen. Using nuclear RNA sequencing of mouse enteric neurons representing distinct intestinal segments and microbiota states, we demonstrate that the intrinsic neural networks of the colon exhibit unique transcriptional profiles controlled by the combined effects of host genetic programmes and microbial colonisation. Microbiota-induced expression of AhR in neurons of the distal gastrointestinal tract enables them to respond to the luminal environment and induce expression of neuron-specific effector mechanisms. Neuron-specific deletion of Ahr or constitutive overexpression of its negative feedback regulator CYP1A1, results in reduced peristaltic activity of the colon, similar to that observed in microbiota-depleted mice. Finally, expression of Ahr in enteric neurons of antibiotic-treated mice partially restores intestinal motility. Taken together, our experiments identify AhR signalling in enteric neurons as a regulatory node that integrates the luminal environment with the physiological output of intestinal neural circuits towards gut homeostasis and health. The enteric nervous system (ENS) encompasses the intrinsic neural networks of the gastrointestinal (GI) tract, which regulate most aspects of intestinal physiology, including peristalsis. In addition to host-specific genetic programmes, microbiota and diet have emerged as critical regulators of gut tissue physiology and changes in the microbial composition of the lumen often accompany GI disorders. However the molecular mechanisms by which gut enviromental factors regulate ENS homeostasis remain unknown. In order to address this issue, we used RNA sequencing to identify genes specifically upregulated in mouse colonic neurons in response to microbial colonisation.