Project description:BackgroundIsolation of colorectal cancer (CRC) cell populations enriched for cancer stem cells (CSCs) may facilitate target identification. There is no consensus regarding the best methods for isolating CRC stem cells (CRC-SCs). We determined the suitability of various cellular models and various stem cell markers for the isolation of CRC-SCs.MethodsEstablished human CRC cell lines, established CRC cell lines passaged through mice, patient-derived xenograft (PDX)-derived cells, early passage/newly established cell lines, and cells directly from clinical specimens were studied. Cells were FAC-sorted for the CRC-SC markers CD44, CD133, and aldehyde dehydrogenase (ALDH). Sphere formation and in vivo tumorigenicity studies were used to validate CRC-SC enrichment.ResultsNone of the markers studied in established cell lines, grown either in vitro or in vivo, consistently enriched for CRC-SCs. In the three other cellular models, CD44 and CD133 did not reliably enrich for stemness. In contrast, freshly isolated PDX-derived cells or early passage/newly established CRC cell lines with high ALDH activity formed spheres in vitro and enhanced tumorigenicity in vivo, whereas cells with low ALDH activity did not.ConclusionsPDX-derived cells, early passages/newly established CRC cell lines and cells from clinical specimen with high ALDH activity can be used to identify CRC-SC-enriched populations. Established CRC cell lines should not be used to isolate CSCs.
Project description:The microsatellite instability-high (MSI-H) phenotype, present in 15% of early colorectal cancer (CRC), confers good prognosis. MSI-H metastatic CRC is rare and its impact on outcomes is unknown. We describe survival outcomes and the impact of chemotherapy, metastatectomy, and BRAF V600E mutation status in the largest reported cohort of MSI-H metastatic colorectal cancer (CRC).A retrospective review of 55 MSI-H metastatic CRC patients from two institutions, Royal Melbourne Hospital (Australia) and The University of Texas MD Anderson Cancer Center (United States), was conducted. Statistical analyses utilized Kaplan-Meier method, Log-rank test, and Cox proportional hazards models.Median age was 67 years (20-90), 58% had poor differentiation, and 45% had stage IV disease at presentation. Median overall survival (OS) from metastatic disease was 15.4 months. Thirteen patients underwent R0/R1 metastatectomies, with median OS from metastatectomy 33.8 months. Thirty-one patients received first-line systemic chemotherapy for metastatic disease with median OS from the start of chemotherapy 11.5 months. No statistically significant difference in progression-free survival or OS was seen between fluoropyrimidine, oxaliplatin, or irinotecan based chemotherapy. BRAF V600E mutation was present in 14 of 47 patients (30%). BRAF V600E patients demonstrated significantly worse median OS; 10.1 versus 17.3 months, P = 0.03. In multivariate analyses, BRAF V600E mutants had worse OS (HR 4.04; P = 0.005), while patients undergoing metastatectomy (HR 0.11; P = <0.001) and patients who initially presented as stage IV disease had improved OS (HR 0.27; P = 0.003).Patients with MSI-H metastatic CRC do not appear to have improved outcomes. BRAF V600E mutation is a poor prognostic factor in MSI-H metastatic CRC.
Project description:Fresh-frozen primary tumor samples from CRC patients were analyzed from their gene expression. Full genome unsupervised clustering identified three intrinsic subtypes that are associated with tumor and clinical characteristics. Primary CRC samples (188) were hybridzed against a common colon cancer reference pool (CRP).
Project description:UnlabelledThe composition of the human intestinal microbiota is linked to health status. The aim was to analyze the microbiota of normal and colon cancer patients in order to establish cancer-related dysbiosis.Patients and methodsStool bacterial DNA was extracted prior to colonoscopy from 179 patients: 60 with colorectal cancer, and 119 with normal colonoscopy. Bacterial genes obtained by pyrosequencing of 12 stool samples (6 Normal and 6 Cancer) were subjected to a validated Principal Component Analysis (PCA) test. The dominant and subdominant bacterial population (C. leptum, C. coccoides, Bacteroides/Prevotella, Lactobacillus/Leuconostoc/Pediococcus groups, Bifidobacterium genus, and E. coli, and Faecalibacterium prausnitzii species) were quantified in all individuals using qPCR and specific IL17 producer cells in the intestinal mucosa were characterized using immunohistochemistry.FindingsPyrosequencing (Minimal sequence 200 nucleotide reads) revealed 80% of all sequences could be assigned to a total of 819 taxa based on default parameter of Classifier software. The phylogenetic core in Cancer individuals was different from that in Normal individuals according to the PCA analysis, with trends towards differences in the dominant and subdominant families of bacteria. Consequently, All-bacteria [log(10) (bacteria/g of stool)] in Normal, and Cancer individuals were similar [11.88±0.35, and 11.80±0.56, respectively, (P = 0.16)], according to qPCR values whereas among all dominant and subdominant species only those of Bacteroides/Prevotella were higher (All bacteria-specific bacterium; P = 0.009) in Cancer (-1.04±0.55) than in Normal (-1.40±0.83) individuals. IL17 immunoreactive cells were significantly expressed more in the normal mucosa of cancer patients than in those with normal colonoscopy.ConclusionThis is the first large series to demonstrate a composition change in the microbiota of colon cancer patients with possible impact on mucosal immune response. These data open new filed for mass screening and pathophysiology investigations.
Project description:Fresh-frozen primary tumor samples from CRC patients were analyzed from their gene expression. Full genome unsupervised clustering identified three intrinsic subtypes that are associated with tumor and clinical characteristics.