Project description:This dataset includes gene expression data from 103 primary tumour samples. 86 samples from this dataset have already been deposited into GEO (GSE36924), and has been duplicated here since the data has been processed differently. This data is also available through the International Cancer Genome Consortium (ICGC) Data Portal (http://dcc/icgc.org), under the project code: Pancreatic Cancer (QCMG, AU). Access to the restricted clinical data must be made through the ICGC Data Access Compliance Office (http://www.icgc.org/daco).
Project description:LINC00920 is a tumor-associated lncRNA identified in the transcriptome dataset of the International Cancer Genome Consortium-Early Onset Prostate Cancer (ICGC-EOPC) cohort. SiRNA-mediated knockdown of LINC00920 negatively affected proliferation, colony formation, and migration of PC-3 prostate cancer cells. Genome-wide expression profiling was performed to identify cellular pathways affected by LINC00920.
Project description:MicroRNAs (miRNAs) play important roles in cell differentiation and self-renewal controlling post-transcriptional processing of mRNAs and attenuating production of the encoded proteins. Here, we unveil a novel oncogenic pathway leading to activation of STAT3 signaling through miRNA-mediated silencing of the E3 ubiquitin ligase COP1. miRNA profiling showed that miR-424 was upregulated in prostate cancer compared to normal prostate and specifically associated with reduced level of the ETS factor ESE3/EHF in an aggressive subgroup of tumors. MiR-424 was significantly elevated also in other epithelial cancers and amplified in 1-3% of various cancers. In normal prostate epithelial cells miR-424 was repressed by ESE3/EHF and when upregulated promoted oncogenic and cancer stem cell (CSC) properties. Conversely, ablation of miR-424 in metastatic prostate cancer cells reduced CSC self-renewal and prevented in vivo tumour initiation and metastatic spread. miR-424 targeted the 3' UTR of COP1 mRNA and reduced COP1 protein level. COP1 induced STAT3 ubiquitylation and degradation by the ubiquitin-proteasome system (UPS). Therefore, reduced levels of COP1 in prostate cancer cells, resulted in accumulation and increased STAT3 signaling. COP1 knockdown and over-expression phenocopied the effects of miR-424 deregulation on oncogenic phenotypes and STAT3 signalling, while STAT3 knockdown prevented the transforming effects of miR-424. Consistently, expression of EHF/ESE3 and RFWD2/COP1 were highly correlated in human prostate cancers and other epithelial tumors. Furthermore, miR-424 induced genes were enriched of STAT3 targets, converged with those induced by COP1 loss in mouse embryos and were associated with adverse prognosis in prostate and other epithelial cancers. In primary prostate tumours, low COP1 and high STAT3 protein level were also significantly associated and predictive of biochemical relapse. Collectively, this study reveals a novel miRNA-activated oncogenic axis in prostate cancer. Targeting miR-424 or miR-424 dependent pathways may represent a unique approach to attack a key node in tumorigenesis.
Project description:Intra-individual stability of the urine miRNA transcriptome was examined by investigating longitudinal changes over time in a cohort of patients with localized prostate cancer. Using training and validation cohorts, urinary miRNA biomarkers are characterized and validated their utility to identify aggressive prostate cancer.
Project description:Intra-individual stability of the urine miRNA transcriptome was examined by investigating longitudinal changes over time in a cohort of patients with localized prostate cancer. Using training and validation cohorts, urinary miRNA biomarkers are characterized and validated their utility to identify aggressive prostate cancer.
Project description:Intra-individual stability of the urine miRNA transcriptome was examined by investigating longitudinal changes over time in a cohort of patients with localized prostate cancer. Using training and validation cohorts, urinary miRNA biomarkers are characterized and validated their utility to identify aggressive prostate cancer.
Project description:Prostate cancer is the second most common cancer among men worldwide. Alterations in the DNA methylation pattern can be one of the leading causes for prostate cancer formation. This study is the first high throughput sequencing study investigating genome-wide DNA methylation patterns in a large cohort of 51 tumor and 53 benign prostate samples using MeDIP-Seq. Comparative analyses identified more than 147,000 cancer-associated epigenetic alterations. Additionally, global methylation patterns demonstrate significant differences based on the TMPRSS2:ERG rearrangement status. We propose the hypermethylation of miRNA-26a as an alternative pathway of ERG rearrangement independent EZH2 activation. The observed increase in differential methylation events in fusion negative tumors can explain the tumorigenic process in the absence of genomic rearrangements. Genomewide examination of methylation profiles in 51 prostate cancer samples