Project description:Degradation and chemical modification of RNA in formalin-fixed paraffin-embedded (FFPE) samples hamper their use in expression profiling studies. In this study, we investigated the feasibility of gene expression signature generation from archival FFPE materials. Nineteen cervical squamous cell carcinoma (SCC) and nine adenocarcinoma (AC) 10~16-year-old FFPE samples were profiled using Affymetrix Exon 1.0 ST arrays. A comparison of the global gene expression changes between SCC and AC revealed 1217 differentially expressed genes. Of these, 1062 showed significantly higher expression levels in SCC relative to AC, and 155 genes were found to be specifically upregulated in AC. When the 1217-gene signature was tested on a fresh-frozen human non-small cell lung cancer (NSCLC) series, it correctly separated the 58 NSCLC samples into SCC and AC. In conclusion, our results showed that clinically and biologically relevant gene expression profiles can be derived from FFPE samples with Exon array profiling.
Project description:RNA was isolated from FFPE tissue sections and expression profile of miRNAs determined by hybridization to Affymetrix GeneChip miRNA 4.0 Array Both normal and cancer samples were used. Normal cases included cosmetic reduction mammoplasties (the only true normal tissue) and tissues with some morphological abnormalities. Some benign, non-cancer, cases were also included. Breast cancer cases included invaive ductal and lobullar carcinomas as well as metaplastic breast cancer
Project description:Copy number alterations (CNAs) play a fundamental role in cancer development and constitute a potential tool for tailored treatments. The CNAs recognition in formalin fixed paraffin embedded (FFPE) material, to date, relies on fluorescence in situ hybridization, but the introduction of large-scale next-generation sequencing (NGS) has dramatically improved their discovery at genome-wide level. The detection of CNAs by NGS in FFPE material is, nonetheless, a complex issue, which still requires validation studies. Herein, the CNAs detection by a widely used NGS assay (Oncomine Comprehensive Assay plus®, OCA+) were evaluated in 14 FFPE samples mirroring diagnostic daily practice and compared to a whole-genome assay. OCA+, a targeted DNA panel, showed lower CNAs detection sensitivity and equal specificity for gains and losses. According to proprietary software pipeline, OCA+ accurately identify gains characterized by CN ≥5,2. A much less robust threshold (CN ≤1.18) was identified that maximized the difference between true and false positive losses. Orthogonal FISH tests validated seven CNAs characterized by CN gain ≥6 or complete loss. Considering the CNAs growing significance in precision medicine, our findings further prompt towards a robust validation of NGS detection in FFPE materials.
Project description:In an effort to identify biomarkers of recurrence, we have performed global RNA-sequencing on 106 formalin-fixed, paraffin-embedded (FFPE) prostatectomy samples from 100 patients at three independent sites, and identified a new set of biomarkers of biochemical recurrence composed of a 24-gene panel. We validated this 24-gene panel on an independent publicly available dataset of 140 patients and this new panel outperformed previously published markers based on cell proliferation gene sets in terms of prediction of biochemical recurrence (BCR). In addition we identified differences in gene expression between Gleason Pattern 4+3 and Gleason Pattern 3+4 tumors. 106 samples from 100 patients were sequenced. Six samples were sequenced from two independent RNA preps and libraries. All samples were taken from FFPE Radical Prostatectomies. Samples were obtained from Atlanta VA Medical Center, U. Toronto Sunnybrook Research Centre, and Moffitt Cancer Center.
Project description:This experiment contains the RNA-Seq samples only. Formalin-fixed, paraffin-embedded (FFPE) tissues are an invaluable resource for clinical research. However, nucleic acids extracted from FFPE tissues are fragmented and chemically modified making them challenging to use in molecular studies. We analysed 23 fresh-frozen (FF), 35 FFPE and 38 paired FF/FFPE specimens, representing six different human tissue types (bladder, prostate and colon carcinoma; liver and colon normal tissue; reactive tonsil) in order to examine the potential use of FFPE samples in next-generation sequencing (NGS) based retrospective and prospective clinical studies. Two methods for DNA and three methods for RNA extraction from FFPE tissues were compared and were found to affect nucleic acid quantity and quality. DNA and RNA from selected FFPE and paired FF/FFPE specimens were used for exome and transcriptome analysis. Preparations of DNA Exome-Seq libraries was more challenging (29.5 % success) than that of RNA-Seq libraries, presumably because of modifications to FFPE tissue-derived DNA. Libraries could still be prepared from RNA isolated from two-decade old FFPE tissues. Data were analysed using the CLC Bio Genomics Workbench and revealed systematic differences between FF and FFPE tissue-derived nucleic acid libraries. In spite of this, pairwise analysis of DNA Exome-Seq data showed concordance for 70-80 % of variants in FF and FFPE samples stored for fewer than three years. RNA-Seq data showed high correlation of expression profiles in FF/FFPE pairs (Pearson Correlations of 0.90 +/- 0.05), irrespective of storage time (up to 244 months) and tissue type. A common set of 1,494 genes was identified with expression profiles that were significantly different between paired FF and FFPE samples irrespective of tissue type. Our results are promising and suggest that NGS can be used to study FFPE specimens in both prospective and retrospective archive-based studies in which FF specimens are not available.
Project description:This SuperSeries is composed of the following subset Series: GSE32488: Expression profiling of formalin-fixed, paraffin-embedded (FFPE) breast cancer metastases of the lymph node and autopsy tissues [DASL HT-12 samples] GSE32489: Expression profiling of formalin-fixed, paraffin-embedded (FFPE) breast cancer metastases of the lymph node and autopsy tissues [DASL HumanRef-v3 samples] Refer to individual Series
Project description:Analysis of 97 formalin-fixed, paraffin-embedded (FFPE) primary breast tumors using Illumina DASL microarray technology on a Custom Breast Cancer Panel and the Illumina Human Cancer Panel. Molecular markers between the pathology defined subtypes of breast cancer were assessed to hypothesize potential therapeutic targets specific to the subtypes Molecular Characterization of 97 primary breast tumor formalin-fixed, paraffin-embedded (FFPE) specimens including 24 triple negative (TN: ER-, PR-, HER2-), 9 HER2-positive (HER2+: ER-, PR-, HER2+), and 64 hormone receptor-positive (HR+: ER+ and/or PR+). 91 of the 97 specimens were characterized on the Illumina Human Cancer DASL Panel and 86 of 97 specimens were characterized on a custom Breast Cancer DASL Panel, 80 of these specimens were common to both the Human Cancer DASL Panel and the custom Breast Cancer DASL Panel.
Project description:The use of Affymetrix U133 2.0 Plus chips on FFPE samples when coupled with a qPCR-based sample pre-assessment step, yielded satisfactory results from the point of view of biological reliability. When compared with the Illumina DASL WG platform, specifically designed for degraded RNA, the data generated with the Affymetrix platform showed a wider interquartile range (1.32 vs 0.57, p<2.2x10-16) suggesting a superior discriminatory power within samples as indicated by the good agreement with the immunohistiochemically derived ER status. FFPE primary breast cancer samples profiled using Illumina DASL WG platform after RNA amplification with the Nugen WT-Ovation FFPE System
Project description:The Formalin-Fixed Paraffin-Embedded (FFPE) samples on selected breast cancer subtypes (ER+/Her2-, ER+/Her2+, ER-/Her2+, and ER-/Her2-) and their paired fresh fine needle aspirated biopsies (FNA) were investigated. The cases represented different subtypes of breast cancers based on their clinical receptors ER (E) and Her2 (H) status to demonstrate the ability of gene profiles to differentiate these tumors. Compared to FNA specimens, FFPE samples yielded relatively more degraded RNA, and 80% of the samples deemed suitable for cDNA-mediated annealing, selection, extension and ligation (DASL) assay. It is able to demonstrate that gene profiles from FFPE microarrays were reproducible and correlated well with the corresponding gene profiles from FNA microarrays. The gene profiles from both FNA and FFPE could differentiate the four breast cancer subtypes, and the expression levels of corresponding gene set were consistent with qRT-PCR and correlated to the clinical outcomes on published microarray data. It supports the use of FFPE specimens to develop a prognostic tool for breast cancers which can obviate the need for fresh specimens.