Project description:Anaplastic meningiomas are a rare, malignant variant of meningioma. At present there is no effective treatment for this cancer. The aim of the study is to identify somatic mutations in anaplastic meningiomas. We plan to sequence a set of 500 known cancer genes in 50 anaplastic meningioma and corresponding peripheral blood DNA samples. Bioinformatics will be used to analyse the results to assess the probability of these mutations being causal and so likely of critical importance for the tumour growth. Identification of these mutations will guide selection of appropriate compounds to effectively treat the disease.
Project description:Genomic profiling of anaplastic meningioma can inform prognostic gene level alterations in lower-grade meningiomas, potentially reflecting evolution of anaplastic meningioma from lowergrade precursor tumours. Larger scale studies in paired primary and recurrent meningiomas are warranted to unravel the evolutionary path to anaplastic meningiomas and prognostic genomic alterations in detail
Project description:Anaplastic meningiomas are a rare, malignant variant of meningioma. At present there is no effective treatment for this cancer. The aim of the study is to identify somatic mutations in anaplastic meningiomas. We plan to sequence a set of 500 known cancer genes in 50 anaplastic meningioma and corresponding peripheral blood DNA samples. Bioinformatics will be used to analyse the results to assess the probability of these mutations being causal and so likely of critical importance for the tumour growth. Identification of these mutations will guide selection of appropriate compounds to effectively treat the disease.
Project description:Although meningioma is a common disease, there is a lack of understanding of the underlying molecular mechanisms behind its initiation and progression. We used combined miRNA-mRNA transcriptome analysis to discover novel genes and networks in meningiomas.
Project description:Although meningioma is a common disease, there is a lack of understanding of the underlying molecular mechanisms behind its initiation and progression. We used combined miRNA-mRNA transcriptome analysis to discover novel genes and networks in meningiomas.
Project description:Purpose: In this study, we try to investigate the possible signaling pathways involved in the tumorigenesis of fibroblastic and anaplastic meningiomas. We also attempt to investigate EGFL6 gene expression in brain arachnoidal tissues and various tumors and to measure EGFL6 levels in serum samples from healthy people and patients with various tumors by using ELISA. Experimental Design: Differential gene expression profiles between meningiomas and brain arachnoidal tissues were established by using Affymetrix GeneChip Human U133 Plus 2.0 Array. KEGG pathway analysis was performed to identify potential gene pathways that may be involved in the pathogenesis of meningiomas. Quantitative real-time PCR (qRT-PCR) was performed to validate the differentially expressed genes in the KEGG pathways. EGFL6 mRNA levels were also determined in brain arachnoidal tissues, meningiomas, and other tumors by qRT-PCR. EGFL6 levels were measured in serum samples from healthy people and patients with various tumors by using ELISA. Results: Fibroblastic meningioma exhibited upregulated PI3K/Akt and TGFβ signaling pathways, and accelerated G1/S progression cell cycle. KEGG analysis also demonstrated that focal adhesion and ECM-receptor interaction pathways were activated in anaplastic meningioma. Benign meningiomas had significantly higher levels of EGFL6 mRNA than brain arachnoidal tissues and atypical and anaplastic meningiomas (P<0.001). EGFL6 gene was also highly expressed in ovarian cancer, but expressed lowly in all other investigated tumors. EGFL6 was hardly detectable in serum samples of healthy people. The mean serum EGFL6 concentration was 675, 118, and 126 pg/ml in patients with benign, atypical, and anaplastic meningiomas respectively. Patients with ovarian cancers also had high serum EGFL6 levels (mean concentration: 617 pg/ml). Patients with all other investigated tumors, however, had low levels of serum EGFL6 with mean concentration less than 240 pg/ml. Conclusion: We proposed that deregulation of cell cycle and PI3K/Akt pathways might play important roles in the tumorigenesis of fibroblastic meningioma. It was also suggested that the activated integrin-mediated signaling pathways were involved in the pathogenesis of anaplastic meningioma. We presented evidence that EGFL6 might serve as a novel serum biomarker for benign meningioma and ovarian cancer. It was also suggested that EGFL6 could help discriminate benignancy or malignancy of meningiomas before surgery or at early time points. Differential gene expression profiles between meningiomas and brain arachnoidal tissues were established by using Affymetrix GeneChip Human U133 Plus 2.0 Array. KEGG pathway analysis was performed to identify potential gene pathways that may be involved in the pathogenesis of meningiomas. Quantitative real-time PCR (qRT-PCR) was performed to validate the differentially expressed genes in the KEGG pathways. EGFL6 mRNA levels were also determined in brain arachnoidal tissues, meningiomas, and other tumors by qRT-PCR. EGFL6 levels were measured in serum samples from healthy people and patients with various tumors by using ELISA.
Project description:Purpose: In this study, we try to investigate the possible signaling pathways involved in the tumorigenesis of fibroblastic and anaplastic meningiomas. We also attempt to investigate EGFL6 gene expression in brain arachnoidal tissues and various tumors and to measure EGFL6 levels in serum samples from healthy people and patients with various tumors by using ELISA. Experimental Design: Differential gene expression profiles between meningiomas and brain arachnoidal tissues were established by using Affymetrix GeneChip Human U133 Plus 2.0 Array. KEGG pathway analysis was performed to identify potential gene pathways that may be involved in the pathogenesis of meningiomas. Quantitative real-time PCR (qRT-PCR) was performed to validate the differentially expressed genes in the KEGG pathways. EGFL6 mRNA levels were also determined in brain arachnoidal tissues, meningiomas, and other tumors by qRT-PCR. EGFL6 levels were measured in serum samples from healthy people and patients with various tumors by using ELISA. Results: Fibroblastic meningioma exhibited upregulated PI3K/Akt and TGFβ signaling pathways, and accelerated G1/S progression cell cycle. KEGG analysis also demonstrated that focal adhesion and ECM-receptor interaction pathways were activated in anaplastic meningioma. Benign meningiomas had significantly higher levels of EGFL6 mRNA than brain arachnoidal tissues and atypical and anaplastic meningiomas (P<0.001). EGFL6 gene was also highly expressed in ovarian cancer, but expressed lowly in all other investigated tumors. EGFL6 was hardly detectable in serum samples of healthy people. The mean serum EGFL6 concentration was 675, 118, and 126 pg/ml in patients with benign, atypical, and anaplastic meningiomas respectively. Patients with ovarian cancers also had high serum EGFL6 levels (mean concentration: 617 pg/ml). Patients with all other investigated tumors, however, had low levels of serum EGFL6 with mean concentration less than 240 pg/ml. Conclusion: We proposed that deregulation of cell cycle and PI3K/Akt pathways might play important roles in the tumorigenesis of fibroblastic meningioma. It was also suggested that the activated integrin-mediated signaling pathways were involved in the pathogenesis of anaplastic meningioma. We presented evidence that EGFL6 might serve as a novel serum biomarker for benign meningioma and ovarian cancer. It was also suggested that EGFL6 could help discriminate benignancy or malignancy of meningiomas before surgery or at early time points.
Project description:Our single-cell transcriptomic dataset exceeds the scale of previous efforts to systematically characterize meningioma. We identified CLU is tumor suppresser, also promote the anti-tumor capability of macrophage, that why CLU decreased in meningioma malignancy. HDACi may inhibit meningioma by increasing CLU expression. Therefore, promoting CLU expression maybe a great strategy for meningioma therapeutics.
Project description:Meningiomas are one of the most common adult brain tumors. For most patients, surgical excision is curative. However, up to 20% recur. Currently, the molecular determinants predicting recurrence and malignant transformation are lacking. We performed global genetic and genomic analysis of 85 meningioma samples of various grades. Copy number alterations were assessed by 100K SNP arrays and correlated with gene expression, proliferation indices, and clinical outcome. In addition to chromosome 22q loss, which was detected in the majority of clinical samples, chromosome 18q and 6q loss significantly predicted recurrence and was associated with anaplastic histology. Five "classes" of meningiomas were detected by gene expression analysis that correlated with copy number alterations, recurrence risk, and malignant histology. These classes more accurately predicted tumor recurrence than Ki-67 index, the gold standard for determining risk of recurrence, and highlight substantial expression heterogeneity between meningiomas. These data offer the most complete description of the genomic landscape of meningiomas and provide a set of tools that could be used to more accurately stratify meningioma patients into prognostic risk groups. Tumor biopsies from 53 female and 32 male subjects with sporadic meningioma were identified from the UCLA Neuro-oncology Program Tissue Bank through institutional review board approved protocols. 57 tumors were designated "benign" WHO I, 20 tumors were "atypical" WHO II, and 8 were "anaplastic" WHO III. Affymetrix SNP arrays were performed according to the manufacturer's instructions on DNA extracted from flash frozen meningioma tumors.