Project description:Multicentric reticulohistiocytosis (MRH) is a rare cause of destructive inflammatory arthritis involving both small, as well as larger joints. We report the case of a 40-year-old Caucasian female with a family history of neoplasia who was referred to our service witha two-month history of inflammatory joint pain. On examination, the patient had inflammatory arthritis, mainly involving the peripheral joints, sacroiliac joint pain, and numerous papulonodular mucocutaneous lesions, including periungual "coral beads". Imaging tests revealed erosive arthritis with synovitis and tenosynovitis, sacroiliac joint changes, as well as papulonodular mucosal lesions in the nasal vestibule, the oropharyngeal mucosa, and supraglottic larynx. She tested positive for HLA-B*07 (Human Leukocyte Antigen B*07) and HLA-B*08, ANA (antinuclear antibodies), RF (rheumatoid factor), anti-Ro52, anti-SSA/Ro, and anti-SSB/La antibodies. The skin biopsy was suggestive of MRH, showing a histiocyte infiltrate and frequent giant multinucleated cells. The patient exhibited favorable outcomes under Methotrexate, then Leflunomide. However, she displayed worsening clinical symptoms while under Azathioprine. To our knowledge, this is the first case of MRH to exhibit positive HLA-B*07 together with HLA-B*08. The rarity of MRH, its unknown etiology and polymorphic clinical presentation, as well as its potential neoplastic/paraneoplastic, and autoimmune nature demand extensive investigation.
Project description:Aim: To compare the overall transcriptional profile in healthy controls and celiac disease patients. This dataset, was used to evaluate if our in vitro model (intestinal intraepithelial lymphocytes, desccribed in doi:10.1016/j.jaut.2020.10242 ) is representative of the transcriptional profile in the intestine under healthy or inflammatory conditions. Samples: Upper colonoscopy biopsies from 5 control and 11 celiac disease patients were taken, total RNA was extracted and RNA-sequencing was performed (without replicates)
Project description:The structure of the title compound, barium lanthanum bromide (11/4/34), can be derived from the fluorite structure. The asymmetric unit contains two Ba sites (one with site symmetry 4/m..), one La site (site symmetry 4..), one mixed-occupied Ba and La site (ratio 1:1, site symmetry m..) and six Br sites (one with site symmetry \=4.., one with 2.., one with m.., the latter being disordered over two positions with a 0.86:0.14 ratio). The fundamental building units of the structure are edge-sharing polyhedral clusters made up of Ba and La bromide clusters inter-connected to BaBr(8) square prisms and BaBr(10) groups.
Project description:HLA-DRB1 shared epitope (SE) alleles are important genetic contributors for the risk of developing anti-citrullinated protein antibodies (ACPA)-positive rheumatoid arthritis (RA), particularly in Caucasians. We aimed to analyze the contribution of HLA-DRB1 alleles and single nucleotide polymorphisms (SNPs) within the major histocompatibility complex (MHC) region to the susceptibility to develop ACPA-positive RA in a Latin American (LA) population with admixed ancestry. A total of 289 ACPA-positive RA patients and 510 controls were enrolled in this study. The presence of HLA-DRB1*04:01, *09:01 and *10:01 was increased in ACPA-positive RA patients compared with healthy controls (p < 0.0001, p < 0.001 and p < 0.01, respectively), whereas DRB1*07:01 and *08:02 was associated with a decreased risk of ACPA-positive RA (p < 0.001 and p < 0.01, respectively). These results showed a strong correlation with estimates from studies in Asians but not in Caucasian populations. The present study describes the protective effects of the HLA-DRB1*07:01 and *08:02 alleles in ACPA-positive RA patients in a LA population for the first time. Identifying relationships between HLA-DRB1 alleles and RA is important for identifying disease associations in different ethnic groups in order to reach a better understanding of RA worldwide.
Project description:Celiac disease is an intestinal inflammatory disorder induced by dietary gluten in genetically susceptible individuals. The mechanisms underlying the massive expansion of interferon g–producing intraepithelial cytotoxic T lymphocytes (CTLs) and the destruction of the epithelial cells lining the small intestine of celiac patients have remained elusive. We report massive oligoclonal expansions of intraepithelial CTLs that exhibit a profound genetic reprogramming of natural killer (NK) functions. These CTLs aberrantly expressed cytolytic NK lineage receptors, such as NKG2C, NKp44, and NKp46, which associate with adaptor molecules bearing immunoreceptor tyrosine-based activation motifs and induce ZAP-70 phosphorylation, cytokine secretion, and proliferation independently of T cell receptor signaling. This NK transformation of CTLs may underlie both the self-perpetuating, gluten-independent tissue damage and the uncontrolled CTL expansion leading to malignant lymphomas in severe forms of celiac disease. Because similar changes were detected in a subset of CTLs from cytomegalovirus-seropositive patients, we suggest that a stepwise transformation of CTLs into NK-like cells may underlie immunopathology in various chronic infectious and inflammatory diseases. Keywords: NKG2C; LAK; CTL; NK receptor; IEL; Mucosal Immunity; Celiac Disease
Project description:Dietary gluten proteins (prolamins) from wheat, rye, and barley are the driving forces behind celiac disease, an organ-specific autoimmune disorder that targets both the small intestine and organs outside the gut. In the small intestine, gluten induces inflammation and a typical morphological change of villous atrophy and crypt hyperplasia. Gut lesions improve and heal when gluten is excluded from the diet and the disease relapses when patients consume gluten. Oral immune tolerance towards gluten may be kept for years or decades before breaking tolerance in genetically susceptible individuals. Celiac disease provides a unique opportunity to study autoimmunity and the transition in immune cells as gluten breaks oral tolerance. Seventy-three celiac disease patients on a long-term gluten-free diet ingested a known amount of gluten daily for six weeks. A peripheral blood sample and intestinal biopsies were taken before and six weeks after initiating the gluten challenge. Biopsy results were reported on a continuous numeric scale that measured the villus height to crypt depth ratio to quantify gluten-induced gut mucosal injury. Pooled B and T cells were isolated from whole blood, and RNA was analyzed by DNA microarray looking for changes in peripheral B- and T-cell gene expression that correlated with changes in villus height to crypt depth, as patients maintained or broke oral tolerance in the face of a gluten challenge.
Project description:Celiac disease is an autoimmune disorder in which ingestion of dietary gluten triggers an immune reaction in the small intestine leading to destruction of the lining epithelium. Current treatment focusses on lifelong adherence to a gluten-free diet. Gluten-specific CD4+ T cells and cytotoxic intraepithelial CD8+ T cells have been proposed to be central in disease pathogenesis. Here we use unbiased single-cell RNA-sequencing and explore the heterogeneity of CD45+ immune cells in the human small intestine. We show altered myeloid cell transcriptomes present in active celiac lesions. CD4+ and CD8+ T cells transcriptomes show extensive changes and we define a natural intraepithelial lymphocyte population that is reduced in celiac disease. We show that the immune landscape in Celiac patients on a gluten-free diet is only partially restored compared to control samples. Altogether, we provide a single cell transcriptome resource that can inform the immune landscape of the small intestine during Celiac disease.