Project description:NGS of 10 mucosal melanomas:
Whole genome sequencing of 5 mucosal melanomas and matched normal DNA
Whole exome sequencing of 5 mucosal melanomas and matched normal DNA
Project description:Genetic redundancy has evolved as a way for human cells to survive the loss of genes that are single copy and essential in other organisms, but also allows tumours to survive despite having highly rearranged genomes. In this study we CRISPR screen 1,191 gene pairs, including paralogues and known and predicted synthetic lethal interactions to identify 105 gene combinations whose co-disruption results in a loss of cellular fitness. 27 pairs influence fitness across multiple cell lines including the paralogues FAM50A/FAM50B, two genes of unknown function. Silencing of FAM50B occurs across a range of tumour types and in this context disruption of FAM50A reduces cellular fitness whilst promoting micronucleus formation and extensive perturbation of transcriptional programmes. This dataset includes CRISPR screening of cancer cell lines, RNA sequencing studies of cancer cell lines and also data from the sequencing of tumour xenografts collected from mice.
Project description:Prolonged stress has adverse consequences for neurons in the hippocampus (HIPP). The amygdala (AMY) is a brain region that is similar to HIPP across many measures, suggesting that chronic stress might modulate AMY and HIPP function in similar ways. However, studies addressing this issue have produced surprising results. For example, a regimen of chronic stress shown to produce atrophy in HIPP neurons caused dendritic branching in AMY neurons. These and other data have revealed that excessive stress induces fundamentally opposing processes in the AMY and HIPP, such that AMY function is facilitated by levels of stress that produce deleterious effects in HIPP. The mechanisms that contribute to the opposing responses of these brain regions to chronic stress are unknown. Such knowledge may suggest novel directions for pharmacological interventions to protect the HIPP from stress-mediated damage. We will determine gene expression patterns in the hippocampus and amygdala under basal and stressful conditions, with a particular interest in those genes that are differentially regulated across the two regions. We hypothesize that genes that are oppositely regulated in the amygdala and hippocampus after stress mediate the opposing functional consequences of chronic stress in these two brain regions. Moreover, genes which are differentially expressed in these regions under basal conditions may underlie the distinct responses of these regions to stress. Rats will receive either 30sec of handling (Control group; n=15) or 3hr of immobilization stress (Stress group; n=15) each day for 14 consecutive days. This stress paradigm has previously been shown to produce opposing effects on dendritic morphology and region-dependent behaviors for the hippocampus versus amygdala. Twenty-four hours after the last stress or handling session, the rats will be overanaesthetized, and the brain will be removed and placed in ice-cold buffer. Tissue will be rapidly dissected from the basolateral complex of the amygdala and the CA3 region of the hippocampus of both hemispheres, flash frozen in liquid nitrogen, and stored at -80C until further processing. The tissue from each brain region will be pooled across groups, yielding four samples (Control-Hippocampus, Control-Amygdala, Stress-Hippocampus, and Stress-Amygdala). Total RNA will be extracted using standard methods, and sent to the centers. Each sample will be run in triplicate, utilizing a total of 12 Affymetrix Rat Genome U34A gene chips. A triplicate array assay of pooled samples has previously been shown to both substantially increase the sensitivity of detecting genes of interest and reduce the variability associated with individual microarrays. In addition, the large number of rats used in each group will reduce the variability in gene expression associated with individual responses to chronic stress, as well as variability due to slight anatomical differences in the tissue extracted from each rat. Keywords: dose response
Project description:Background/objectivesWhile outcomes for pediatric T-cell acute lymphoblastic leukemia (T-ALL) are favorable, there are few widely accepted prognostic factors, limiting the ability to risk stratify therapy.Design/methodsDana-Farber Cancer Institute (DFCI) Protocols 05-001 and 11-001 enrolled pediatric patients with newly diagnosed B- or T-ALL from 2005 to 2011 and from 2012 to 2015, respectively. Protocol therapy was nearly identical for patients with T-ALL (N = 123), who were all initially assigned to the high-risk arm. End-induction minimal residual disease (MRD) was assessed by reverse transcription polymerase chain reaction (RT-PCR) or next-generation sequencing (NGS), but was not used to modify postinduction therapy. Early T-cell precursor (ETP) status was determined by flow cytometry. Cases with sufficient diagnostic DNA were retrospectively evaluated by targeted NGS of known genetic drivers of T-ALL, including Notch, PI3K, and Ras pathway genes.ResultsThe 5-year event-free survival (EFS) and overall survival (OS) for patients with T-ALL was 81% (95% CI, 73-87%) and 90% (95% CI, 83-94%), respectively. ETP phenotype was associated with failure to achieve complete remission, but not with inferior OS. Low end-induction MRD (<10-4 ) was associated with superior disease-free survival (DFS). Pathogenic mutations of the PI3K pathway were mutually exclusive of ETP phenotype and were associated with inferior 5-year DFS and OS.ConclusionsTogether, our findings demonstrate that ETP phenotype, end-induction MRD, and PI3K pathway mutation status are prognostically relevant in pediatric T-ALL and should be considered for risk classification in future trials. DFCI Protocols 05-001 and 11-001 are registered at www.clinicaltrials.gov as NCT00165087 and NCT01574274, respectively.
Project description:Macaque species serve as important animal models of human infection and immunity. To more fully scrutinize their potential in both the analysis of disease pathogenesis and vaccine development, it is necessary to characterize the major histocompatibility complex (MHC) class I loci of Macaca mulatta (Mamu), Macaca nemestrina (Mane), and Macaca fascicularis (Mafa) at the genomic level. The oligomorphic Mamu-A2*05/Mane-A2*05 (previously known as Mane-A*06) family of macaque MHC-A alleles has recently been shown to be present at high frequency in both Indian rhesus and pig-tailed macaque populations. Using a locus-specific amplification and direct DNA typing methodology, we have additionally found that the locus encoding this family is very prevalent (75%) among a sampling of 182 Chinese rhesus macaques and has a high prevalence (80%) within a larger, independent cohort of 309 pig-tailed macaques. Interestingly, among the Chinese rhesus macaques, only six alleles previously identified in Indian-origin animals were observed, while three recently identified in Chinese-origin animals and 25 new alleles were characterized. Among the pig-tailed macaques, we observed 1 previously known (Mane-A*06) and 19 new alleles. Examination of the orthologous locus in a preliminary sampling of 30 cynomolgus macaques showed an even higher presence (87%) of Mafa-A2*05 family alleles, with 5 previously identified and 15 new alleles characterized. The continued discovery of novel alleles and thus further diversity within the Mamu-A2*05/Mane-A2*05/Mafa-A2*05 family indicates that this MHC-A locus, although highly conserved across the three species of macaques, has remained a dynamic entity during evolution.
Project description:BACKGROUND: Each major protein database uses its own conventions when assigning protein identifiers. Resolving the various, potentially unstable, identifiers that refer to identical proteins is a major challenge. This is a common problem when attempting to unify datasets that have been annotated with proteins from multiple data sources or querying data providers with one flavour of protein identifiers when the source database uses another. Partial solutions for protein identifier mapping exist but they are limited to specific species or techniques and to a very small number of databases. As a result, we have not found a solution that is generic enough and broad enough in mapping scope to suit our needs. RESULTS: We have created the Protein Identifier Cross-Reference (PICR) service, a web application that provides interactive and programmatic (SOAP and REST) access to a mapping algorithm that uses the UniProt Archive (UniParc) as a data warehouse to offer protein cross-references based on 100% sequence identity to proteins from over 70 distinct source databases loaded into UniParc. Mappings can be limited by source database, taxonomic ID and activity status in the source database. Users can copy/paste or upload files containing protein identifiers or sequences in FASTA format to obtain mappings using the interactive interface. Search results can be viewed in simple or detailed HTML tables or downloaded as comma-separated values (CSV) or Microsoft Excel (XLS) files suitable for use in a local database or a spreadsheet. Alternatively, a SOAP interface is available to integrate PICR functionality in other applications, as is a lightweight REST interface. CONCLUSION: We offer a publicly available service that can interactively map protein identifiers and protein sequences to the majority of commonly used protein databases. Programmatic access is available through a standards-compliant SOAP interface or a lightweight REST interface. The PICR interface, documentation and code examples are available at http://www.ebi.ac.uk/Tools/picr.