Project description:In the past decades, the incidence of esophageal adenocarcinoma has increased dramatically in Western populations. Better understanding of disease etiology along with the identification of novel prognostic and predictive biomarkers are urgently needed to improve the dismal survival probabilities. Here, we performed comprehensive RNA (both coding and non-coding) profiling in various samples from 17 patients diagnosed with esophageal adenocarcinoma, high-grade dysplastic or non-dysplastic Barrett’s esophagus. Per patient, a blood plasma sample, and a healthy esophageal and disease tissue sample were included. In total, this comprehensive dataset consists of 102 RNA-seq libraries from 51 samples. The raw data for this study have been deposited to the controlled access archive EGA under submission EGAS00001004939.
Project description:In the past decades, the incidence of esophageal adenocarcinoma has increased dramatically in Western populations. Better understanding of disease etiology along with the identification of novel prognostic and predictive biomarkers are urgently needed to improve the dismal survival probabilities. Here, we performed comprehensive RNA (both coding and non-coding) profiling in various samples from 17 patients diagnosed with esophageal adenocarcinoma, high-grade dysplastic or non-dysplastic Barrett’s esophagus. Per patient, a blood plasma sample, and a healthy esophageal and disease tissue sample were included. In total, this comprehensive dataset consists of 102 RNA-seq libraries from 51 samples. The raw data for this study have been deposited to the controlled access archive EGA under submission EGAS00001004939.
Project description:In the past decades, the incidence of esophageal adenocarcinoma has increased dramatically in Western populations. Better understanding of disease etiology along with the identification of novel prognostic and predictive biomarkers are urgently needed to improve the dismal survival probabilities. Here, we performed comprehensive RNA (both coding and non-coding) profiling in various samples from 17 patients diagnosed with esophageal adenocarcinoma, high-grade dysplastic or non-dysplastic Barrett’s esophagus. Per patient, a blood plasma sample, and a healthy esophageal and disease tissue sample were included. In total, this comprehensive dataset consists of 102 RNA-seq libraries from 51 samples. The raw data for this study have been deposited to the controlled access archive EGA under submission EGAS00001004939.
Project description:In the past decades, the incidence of esophageal adenocarcinoma has increased dramatically in Western populations. Better understanding of disease etiology along with the identification of novel prognostic and predictive biomarkers are urgently needed to improve the dismal survival probabilities. Here, we performed comprehensive RNA (both coding and non-coding) profiling in various samples from 17 patients diagnosed with esophageal adenocarcinoma, high-grade dysplastic or non-dysplastic Barrett’s esophagus. Per patient, a blood plasma sample, and a healthy esophageal and disease tissue sample were included. In total, this comprehensive dataset consists of 102 RNA-seq libraries from 51 samples. The raw data for this study have been deposited to the controlled access archive EGA under submission EGAS00001004939.
Project description:The paper "Metabolomic Machine Learning Predictor for Diagnosis and Prognosis of Gastric Cancer" addresses the need for non-invasive diagnostic tools for gastric cancer (GC). Traditional methods like endoscopy are invasive and expensive. The authors conducted a targeted metabolomics analysis of 702 plasma samples to develop machine learning models for GC diagnosis and prognosis. The diagnostic model, using 10 metabolites, achieved a sensitivity of 0.905, outperforming conventional protein marker-based methods. The prognostic model effectively stratified patients into risk groups, surpassing traditional clinical models.
I have successfully reproduced the diagnosis model from the paper. This machine learning-based system differentiates GC patients from non-GC controls using metabolomics data from plasma samples analyzed by liquid chromatography-mass spectrometry (LC-MS). The model focuses on 10 metabolites, including succinate, uridine, lactate, and serotonin. Employing LASSO regression and a random forest classifier, the model achieved an AUROC of 0.967, with a sensitivity of 0.854 and specificity of 0.926. This model significantly outperforms traditional diagnostic methods and underscores the potential of integrating machine learning with metabolomics for early GC detection and treatment.
Project description:CTCF ChIP-seq of 39 primary samples derived from human acute leukemias, namely AML, T-ALL and mixed myeloid/lymphoid leukemias with CpG Island Methylator Phenotype (CIMP). Due to patient confidentiality considerations, the raw data files for this dataset have been deposited to the EGA controlled-access archive under the accession numbers EGAS00001007094 (study); EGAD00001011059 (dataset).
Project description:The Raw QE files are recorded from 38 clinical plasma samples from early stage pancreatic patients versus healthy controls. The abundant plasma proteins are depleted, and QE was operated under data independent acquisition mode. The quantification result was used for generating a proteomic dataset for deep learning purposes using neural network algorithms.
Project description:H3K27ac ChIP-seq of 79 primary samples derived from human acute leukemias, namely AML, T-ALL and mixed myeloid/lymphoid leukemias with CpG Island Methylator Phenotype (CIMP). In addition, 4 samples derived from CD34+ cord blood cells of healthy donors were included. Due to patient confidentiality considerations, the raw data files for this dataset have been deposited to the EGA controlled-access archive under the accession numbers EGAS00001007094 (study); EGAD00001011060 (dataset).