Project description:Analysis of Idiopathic pulmonary fibrosis (IPF) at gene expression level. The hypothesis tested in the present study was that Epigenetic mechanisms are likely to be associated with pathogenesis in IPF. To determine the DNA methylation change, and their effects on gene expression, we compared microarray data of DNA methylation and RNA expression. Results provide that among the genes whose DNA methylation status and RNA expression were both significantly altered between IPF-rapid and normal controls. Total RNA obtained from Idiopathic pulmonary fibrosis samples.
Project description:In a comparative study the genome wide methylation levels using Illumina Infinium 450k chips were assigned. The specific methylation pattern of lung cancer patients (n=17), patients suffering from idiopathic lung fibrosis (n=37) as well as 32 patients suffering from chronic obstructive pulmonary disease and 43 DNA samples derived from healthy-lungs were determined. Lung biopsy samples were obtained by bronchoscopy. Thus obtained tissue was snap frozen in liquid nitrogen. Classification of lung fibrosis patients base on CT scans of the affected lung.
Project description:Microarray analysis to examine glycan-related gene expression in idiopathic pulmonary fibrosis Heparan sulfate 6-O-endosulfatases (Sulf1 and Sulf2) remove 6-O sulfate groups from heparan sulfate intra-chain sites on the cell surface and in the extracellular matrix, and modulate the functions of many growth factors and morphogens including FGF, Wnt and TGF-beta. Works from our laboratory have shown that TGF-beta 1 induces Sulf1 and Sulf2 expression in a cell-type specific manner in the lung, specifically Sulf1 in lung fibroblasts and Sulf2 in type II alveolar epithelial cells. Interestingly TGF-beta 1-induced Sulf1 and Sulf2 in turn modulate TGF-beta 1 function in culture. The aim of this study is to examine the expression of Sulf1 and Sulf2 as well as other glycan-related genes (heparan biosynthetic enzymes, TGF-beta, FGF and Wnt signaling pathway components) in human idiopathic pulmonary fibrosis (IPF) lungs compared to normal lung samples. We will examine gene expression in triplicate samples from RNA of total lung homogenates from IPF and control (normal) lungs
Project description:Healthy donor and idiopathic pulmonary fibrosis (IPF) patient lung tissues were digested, Lin–EpCAM+ cells were isolated with FACS, and then single-cell RNA-seq was performed.
Project description:Lung resident mesenchymal stem cells exert a pivotal role in tissue repair. Idiopathic pulmonary fibrosis is characterized by an aberrant tissue repair. We performed a transcriptomic analysis to characterize lung resident mesenchymal stem cells from idiopathic pulmonary fibrosis patients
Project description:In summary, we characterized the role of m6A modification in pulmonary fibrosis. We reveal that m6A modification is increased in bleomycin induced pulmonary fibrosis mice model, FMT-derived myofibroblasts and idiopathic pulmonary fibrosis patient lung samples. Lowering m6A level through silencing METTL3 suppress FMT process in vitro and vivo. Fundamentally, m6A modification regulates FMT by modulating the translation of KCNH6 mRNA in a YTHDF1 dependent manner. This study provides novel insights into the mechanism of FMT process and suggests m6A modification intervention may be a promising therapeutic strategy for pulmonary fibrosis.
Project description:This study aimed to delineate molecular phenotypes of the lung microenvironment across idiopathic interestitial pneumonias, namely interstitial pneumonia with autoimmune features (IPAF)and idiopathic pulmonary fibrosis (IPF) through proteomic analysis of bronchoalveolar lavage fluid (BALF).