EGAS00001001933-sc-2021-10-19T15:31:57Z - samples
Ontology highlight
ABSTRACT: Activating mutations in PIK3CA generate large clones in the aging human esophagus. Here we
investigate the underlying cellular mechanisms regulating their expansion by lineage tracing.
Expression of an activating heterozygous Pik3caH1047R mutation in single progenitor cells of the
mouse esophagus tilts cell fate towards proliferation, generating mutant clones that outcompete their
wild type neighbours. The mutation leads to increased aerobic glycolysis through the activation of
Hif1α transcriptional targets. In vitro and in vivo interventions that level out differences in activation
of the PI3K/HIF1α/aerobic glycolysis axis between wild type and Pik3caH1047R cells attenuate the
competitive advantage of the mutants. In contrast, metabolic conditions that alter Insulin/PI3K
signalling, such as type-1 diabetes or diet-induced insulin resistance, further increase Pik3caH1047R
mutant competitiveness in mice. Consistently, the density of activating PIK3CA mutations in human
esophagus is increased in overweight individuals. We conclude that the metabolic environment
influences the mutational landscape of normal epithelia. Clinically feasible interventions that even
out signalling imbalances between wild type and mutant cells may therefore limit the expansion of
oncogenic mutants in normal tissues.
PROVIDER: EGAD00001008281 | EGA |
REPOSITORIES: EGA
ACCESS DATA