Genomics

Dataset Information

0

71ce29d8-7b35-4239-932b-13346d3dea8c - samples


ABSTRACT: To model recovery dynamics, using severe COVID-19 as the example, we align heterogeneous recovery trajectories via a novel computational scheme applied to longitudinally sampled blood transcriptomes. We thus generate pseudotime trajectories, which we then link to cellular and molecular mechanisms based on cell deconvolution analysis and molecular pathway prediction, thus presenting a unique framework for studying recovery processes over time.

PROVIDER: EGAD00001008331 | EGA |

REPOSITORIES: EGA

Similar Datasets

| EGAS00001005735 | EGA
2020-01-16 | E-MTAB-8585 | biostudies-arrayexpress
2018-12-26 | GSE109179 | GEO
2010-06-24 | E-GEOD-15751 | biostudies-arrayexpress
| PRJEB48030 | ENA
2012-09-13 | E-GEOD-40829 | biostudies-arrayexpress
| PRJEB35512 | ENA
2012-09-13 | E-GEOD-40830 | biostudies-arrayexpress
2021-12-20 | GSE191183 | GEO
2020-06-09 | PXD018874 | Pride