Project description:Large-scale initiatives like The Cancer Genome Atlas (TCGA) performed omics studies on hundreds of kidney cancer patients, but predominantly on Caucasians. We now investigated genomics of Chinese clear cell renal cell carcinoma (ccRCC) patients.
Project description:Aberrant DNA methylation is common in cancer. To associate DNA methylation with gene function, we performed RNAseq upon tumor tissue and matched normal tissues of two ccRCC (clear cell renal cell carcinoma) patients. To quantify 5mC and 5hmC level in each CG site at genome-wide level, we performed BS-seq and TAB-seq upon tumor tissue and matched normal tissues of two ccRCC (clear cell renal cell carcinoma) patients, respectively. mRNA profiles of tumor and matched normal tissues from two ccRCC patients were generated by deep sequencing, using Hiseq 2000. Single-nucleotide-resolution, whole-genome, 5mC and 5hmC profiles of tumor and matched normal tissues from two ccRCC (clear cell renal cell carcinoma) patients were generated by deep sequencing, using Hiseq 2000.
Project description:Renal cell carcinoma (RCC) exhibits some unusual features and genes commonly mutated in cancer are rarely mutated in clear-cell RCC (ccRCC), the most common type. The most prevalent genetic alteration in ccRCC is the inactivation of the tumor suppressor gene VHL. Using whole-genome and exome sequencing we discovered BAP1 as a novel tumor suppressor in ccRCC that shows little overlap with mutations in PBRM1, another recent tumor suppressor. Whereas VHL was mutated in 81% of the patients (142/176), PBRM1 was lost in 58% and BAP1 in 15% of the patients analyzed. All these tumor suppressor genes are located in chromosome 3p, which is partially or completely lost in most ccRCC patients. However, BAP1 but not PBRM1 loss was associated with higher Fuhrman grade and, therefore, poorer outcome. Xenograft tumors (tumorgrafts) implanted orthotopically in mice retained >92% of mutations and exhibited similar DNA copy number alterations to corresponding primary tumors. Thus, after inactivation of VHL, the acquisition of a mutation in BAP1 or PBRM1 defines a different program that might alter the fate of the patient. Our results establish the foundation for an integrated pathological and molecular genetic classification of about 70% of ccRCC patients, paving the way for subtype-specific treatments exploiting genetic vulnerabilities. The genomic DNA of clear-cell renal cell carcinoma (ccRCC) primary tumors, tumors growing in immunodeficient mice (tumorgrafts), and normal samples were labeled and hybridized to Affymetrix SNP arrays 6.0.