Project description:The mechanistic role of the airway microbiome in chronic obstructive pulmonary disease (COPD) remains largely unexplored. We present a landscape of airway microbe-host interactions in COPD through an in-depth profiling of the sputum metagenome, metabolome, host transcriptome and proteome from 99 COPD patients and 36 healthy individuals in China.
Project description:<p>The mechanistic role of the airway microbiome in chronic obstructive pulmonary disease (COPD) remains largely unexplored. We present a landscape of airway microbe-host interactions in COPD by an in-depth profiling of sputum metagenome, metabolome, host transcriptome and proteome from 99 COPD patients and 36 healthy individuals. Multi-omic data were integrated using a sequential mediation analysis, to assess in silico associations of the microbiome with neutrophilic or eosinophilic inflammation, two primary COPD inflammatory endotypes, mediated through microbial metabolic interaction with host gene expression. Mechanistic links of microbiome-metabolite-host interaction were identified leveraging microbial genetic information and established metabolite-human gene pairs. The strongest link for neutrophil-predominant COPD was altered tryptophan metabolism driven by airway lactobacilli resulting in reduced indole-3-acetic acid (IAA), which was in turn linked to perturbed host IL-22 signaling and epithelial cell apoptosis pathways. In vivo and in vitro studies showed that airway microbiome-derived IAA mitigates neutrophilic inflammation, apoptosis, emphysema, and lung function decline, via IL-22-mediated macrophage-epithelial cell crosstalk. Intranasal inoculation of two airway lactobacilli restored IAA and recapitulated its protective effects in mice. These findings provide the rationale for therapeutically targeting microbe-host interaction in COPD.</p><p><br></p><p><strong>Linked studies:</strong></p><p><strong>UPLC-MS/MS assays</strong> of original cohort human samples are reported in this study.</p><p><strong>UPLC-MS/MS assays</strong> of more recent cohort human samples are reported in <a href='https://www.ebi.ac.uk/metabolights/MTBLS5423' rel='noopener noreferrer' target='_blank'><strong>MTBLS5423</strong></a>.</p><p><strong>UPLC-MS/MS assays</strong> of more recent murine samples are reported in <a href='https://www.ebi.ac.uk/metabolights/MTBLS6894' rel='noopener noreferrer' target='_blank'><strong>MTBLS6894</strong></a>.</p>
Project description:Chronic obstructive pulmonary disease (COPD) is one of the most prevalent lung diseases, and involves persistent airflow limitation and incorporates both emphysema and chronic bronchitis. Cigarette smoking has been identified as the main risk factor for disease development and progression. In a basic model of COPD, the disease is initiated when the physiologic response mechanisms to cigarette smoke exposure are overwhelmed; for example, because of long-term exposure effects or other aging-related changes. In this parallel-group case-controlled clinical study we asked to what extent the different transitions in a chronic-exposure-to-disease model are reflected in the proteome and cellular transcriptome of induced sputum samples from the lung. For this, we selected 60 age- and gender-matched individuals for each of four study groups: current healthy smokers, current-smoker COPD patients, former smokers, and never smokers (a total of 240 individuals). Induced sputum was collected, the cell-free supernatant was analyzed by quantitative proteomics (isobaric-tag based), and the cellular mRNA fraction was analyzed by microarray-based expression profiling. The sputum proteome of current smokers (healthy or COPD patients) clearly reflected the common physiological responses to smoke exposure, including alterations in mucin/trefoil proteins (e.g., MUC5AC and TFF1/3up-regulation), peptidase regulators (e.g., TIMP1 up-regulation), and a prominent xenobiotic/oxidative stress response (e.g., NQO1 and ALDH3A1 up-regulation). The latter response also was observed in the sputum transcriptome, which additionally demonstrated an immune-related polarization change (toward a M2 signature). The (long-term) former smoker group showed nearly complete reversal of the observable biological effects. Thirteen differentially abundant proteins between the COPD and healthy smoker groups were identified. These abundant proteins included previously reported COPD-associated proteins (e.g., TIMP1 (up-regulation) and APOA1 (down-regulation)) and novel proteins such as C6orf58 and BPIFB1 (LPLUNC1) (both up-regulated in the COPD group compared with the healthy smokers). In summary, our study demonstrates that sputum proteomics/transcriptomics can capture the complex and reversible physiological response to cigarette smoke exposure, which appears to be only slightly modulated in early-stage COPD patients. The study has been registered on ClinicalTrials.gov with identifier NCT01780298.
Project description:Chronic obstructive pulmonary disease (COPD) is one of the most prevalent lung diseases, and involves persistent airflow limitation and incorporates both emphysema and chronic bronchitis. Cigarette smoking has been identified as the main risk factor for disease development and progression. In a basic model of COPD, the disease is initiated when the physiologic response mechanisms to cigarette smoke exposure are overwhelmed; for example, because of long-term exposure effects or other aging-related changes. In this parallel-group case-controlled clinical study we asked to what extent the different transitions in a chronic-exposure-to-disease model are reflected in the proteome and cellular transcriptome of induced sputum samples from the lung. For this, we selected 60 age- and gender-matched individuals for each of four study groups: current healthy smokers, current-smoker COPD patients, former smokers, and never smokers (a total of 240 individuals). Induced sputum was collected, the cell-free supernatant was analyzed by quantitative proteomics (isobaric-tag based), and the cellular mRNA fraction was analyzed by microarray-based expression profiling. The sputum proteome of current smokers (healthy or COPD patients) clearly reflected the common physiological responses to smoke exposure, including alterations in mucin/trefoil proteins (e.g., MUC5AC and TFF1/3up-regulation), peptidase regulators (e.g., TIMP1 up-regulation), and a prominent xenobiotic/oxidative stress response (e.g., NQO1 and ALDH3A1 up-regulation). The latter response also was observed in the sputum transcriptome, which additionally demonstrated an immune-related polarization change (toward a M2 signature). The (long-term) former smoker group showed nearly complete reversal of the observable biological effects. Thirteen differentially abundant proteins between the COPD and healthy smoker groups were identified. These abundant proteins included previously reported COPD-associated proteins (e.g., TIMP1 (up-regulation) and APOA1 (down-regulation)) and novel proteins such as C6orf58 and BPIFB1 (LPLUNC1) (both up-regulated in the COPD group compared with the healthy smokers). In summary, our study demonstrates that sputum proteomics/transcriptomics can capture the complex and reversible physiological response to cigarette smoke exposure, which appears to be only slightly modulated in early-stage COPD patients. The study has been registered on ClinicalTrials.gov with identifier NCT01780298.
Project description:Chronic obstructive pulmonary disease (COPD) is one of the most prevalent lung diseases, and involves persistent airflow limitation and incorporates both emphysema and chronic bronchitis. Cigarette smoking has been identified as the main risk factor for disease development and progression. In a basic model of COPD, the disease is initiated when the physiologic response mechanisms to cigarette smoke exposure are overwhelmed; for example, because of long-term exposure effects or other aging-related changes. In this parallel-group case-controlled clinical study we asked to what extent the different transitions in a chronic-exposure-to-disease model are reflected in the proteome and cellular transcriptome of induced sputum samples from the lung. For this, we selected 60 age- and gender-matched individuals for each of four study groups: current healthy smokers, current-smoker COPD patients, former smokers, and never smokers (a total of 240 individuals). Induced sputum was collected, the cell-free supernatant was analyzed by quantitative proteomics (isobaric-tag based), and the cellular mRNA fraction was analyzed by microarray-based expression profiling. The sputum proteome of current smokers (healthy or COPD patients) clearly reflected the common physiological responses to smoke exposure, including alterations in mucin/trefoil proteins (e.g., MUC5AC and TFF1/3up-regulation), peptidase regulators (e.g., TIMP1 up-regulation), and a prominent xenobiotic/oxidative stress response (e.g., NQO1 and ALDH3A1 up-regulation). The latter response also was observed in the sputum transcriptome, which additionally demonstrated an immune-related polarization change (toward a M2 signature). The (long-term) former smoker group showed nearly complete reversal of the observable biological effects. Thirteen differentially abundant proteins between the COPD and healthy smoker groups were identified. These abundant proteins included previously reported COPD-associated proteins (e.g., TIMP1 (up-regulation) and APOA1 (down-regulation)) and novel proteins such as C6orf58 and BPIFB1 (LPLUNC1) (both up-regulated in the COPD group compared with the healthy smokers). In summary, our study demonstrates that sputum proteomics/transcriptomics can capture the complex and reversible physiological response to cigarette smoke exposure, which appears to be only slightly modulated in early-stage COPD patients. The study has been registered on ClinicalTrials.gov with identifier NCT01780298.
Project description:Gene expression profiles were generated from induced sputum samples in COPD and healthy controls. The study identified transcriptional phenotypes of COPD.
Project description:Little is known about the lung microbiome dynamics and host-microbiome interactions in relation to chronic obstructive pulmonary disease (COPD) exacerbations and in patient subgroups based on smoking status and disease severity. Here we performed a 16S ribosomal RNA survey on sputum microbiome from 16 healthy and 43 COPD subjects. For COPD subjects, a longitudinal sampling was performed from stable state to exacerbations, at two and six weeks post-exacerbations and at six months from first stable visit. Host sputum transcriptome were characterized for a subset of COPD patient samples.
Project description:We evaluated the applicability and usability of whole-genome methylomics of sputum samples in molecular profiling of chronic inflammatory lung diseases. Genomic DNA was purified from sputum samples of subjects with Asthma, COPD as well as healthy controls and analyzed on the Illumina Infinium HumanMethylation 450k platform.
Project description:In addition to analyzing whole-genome methylation, we concomitantly evaluated sputum cell gene expression in the context of chronic inflammatory lung disease. Nucleic acids were purified from sputum samples of subjects with Asthma, COPD as well as healthy controls. Gene expression was analyzed on the Agilent Human GE 4x44k v2 platform.