Project description:CTCF ChIP-seq of 39 primary samples derived from human acute leukemias, namely AML, T-ALL and mixed myeloid/lymphoid leukemias with CpG Island Methylator Phenotype (CIMP). Due to patient confidentiality considerations, the raw data files for this dataset have been deposited to the EGA controlled-access archive under the accession numbers EGAS00001007094 (study); EGAD00001011059 (dataset).
Project description:H3K27ac ChIP-seq of 79 primary samples derived from human acute leukemias, namely AML, T-ALL and mixed myeloid/lymphoid leukemias with CpG Island Methylator Phenotype (CIMP). In addition, 4 samples derived from CD34+ cord blood cells of healthy donors were included. Due to patient confidentiality considerations, the raw data files for this dataset have been deposited to the EGA controlled-access archive under the accession numbers EGAS00001007094 (study); EGAD00001011060 (dataset).
Project description:The polygenic nature of schizophrenia (SCZ) implicates many variants in disease development. Rare variants of high penetrance have been shown to contribute to the disease prevalence. Whole-exome sequencing of a large three-generation family with SCZ and bipolar disorder identified a single segregating novel, rare, non-synonymous variant in the gene CASKIN1. The variant D1204N is absent from all databases, and CASKIN1 has a gnomAD missense score Z = 1.79 and pLI = 1, indicating its strong intolerance to variation. We find that introducing variants in the proline-rich region where the D1204N resides results in significant cellular changes in iPSC-derived neurons, consistent with CASKIN1’s known functions. We observe significant transcriptomic changes in 368 genes (padj < 0.05) involved in neuronal differentiation and nervous system development. We also observed nominally significant changes in the frequency of action potentials during differentiation, where the speed at which the edited and unedited cells reach the same level of activity differs. Our results suggest that CASKIN1 is an excellent gene candidate for psychosis development with high penetrance in this family.
Project description:RNA was isolated from purified human CD8 cells that were incubated with anti-HER2/CD3 TDB in the presence of SK-BR-3 cells. This dataset only contains the metadata and processed data. Raw data can be accessed via the EGA accession EGAS00001003734
Project description:Single-cell RNA-seq libraries were generated from human PBMCs that were incubated with anti-HER2/CD3 TDB in the presence of KPL-4 cells. This dataset only contains the metadata and processed data. Raw data can be accessed via the EGA accession EGAS00001003734
Project description:The structural organization of eukaryotic genomes is contingent upon fractionation of DNA into transcriptionally active euchromatin and repressive heterochromatin. However, we still have a limited understanding of how these distinct states are first established during animal embryogenesis. Histone lysine 9 trimethylation (H3K9me3) is critical to heterochromatin formation and bulk establishment of this mark is thought to help drive large-scale remodeling of the initially naive chromatin state during animal embryogenesis. However, a detailed understanding of this process is lacking. Here, we leverage CUT&RUN to define the emerging H3K9me3 landscape of the zebrafish embryo with high sensitivity and temporal resolution. We find that despite the prevalence of DNA transposons in the zebrafish genome, LTR transposons are preferentially targeted for H3K9me3 deposition in the embryo, with different families showing distinct establishment kinetics. High signal-to-noise ratios afforded by CUT&RUN revealed emerging sites of low-amplitude H3K9me3 nucleation prior embryonic genome activation (EGA), with early nucleation primarily at a subset of transposon sequences, loci enriched for maternal piRNAs, and pericentromeres. Unexpectedly, the number of nucleated H3K9me3 sites increases linearly across blastula development while quantitative comparison revealed a >10-fold genome-wide increase in H3K9me3 signal at established sites over just 30 minutes precisely at the onset of major EGA. Later stage analysis revealed continued maturation of the H3K9me3 landscape beyond the initial wave of bulk establishment. Our findings uncover distinct mechanisms of pre- and post-EGA H3K9me3 targeting and reveal decoupling of H3K9me3 establishment from reinforcement during de novo heterochromatin formation.
Project description:Psychosis is a highly heritable and heterogeneous psychiatric condition. Its genetic architecture is thought to be the result of the joint effect of common and rare variants. Families with high prevalence are an interesting approach to shed light on the rare variant's contribution without the need of collecting large cohorts. To unravel the genomic architecture of a family enriched for psychosis, with four affected individuals, we applied a system genomic approach based on karyotyping, genotyping by whole-exome sequencing to search for rare single nucleotide polymorphisms (SNPs) and SNP array to search for copy-number variants (CNVs). We identified a rare non-synonymous variant, g.39914279 C>G, in the MACF1 gene, segregating with psychosis. Rare variants in the MACF1 gene have been previously detected in SCZ patients. Besides, two rare CNVs, DUP3p26.3 and DUP16p23.3, were also identified in the family affecting relevant genes (CNTN6 and CDH13, respectively). We hypothesize that the co-segregation of these duplications with the rare variant g.39914279 C>G of MACF1 gene precipitated with schizophrenia and schizoaffective disorder.
Project description:Hi-C of 17 primary samples obtained from human acute leukemias, namely AML, T-ALL and mixed myeloid/lymphoid leukemias with CpG Island Methylator Phenotype (CIMP). As healthy controls, Hi-C of CD34+ HSPCs from 3 healthy donors were used. Due to patient confidentiality considerations, the raw data files for this dataset have been deposited to the EGA controlled-access archive under the accession numbers EGAS00001007094 (study); EGAD00001011051 (dataset).