Project description:Genome-wide DNA Methylation Data from Illumina HumanMethylationEPIC arrays for whole blood samples from 570 healthy individuals. Raw IDAT files are available for a subset of 403 samples on EGA. Raw data (IDAT files) and associated phenotype information are available for all individuals included in this study (n=570) directly from CIBMTR. Data are available under controlled access release upon reasonable request and execution of a data use agreement. Requests should be submitted to CIBMTR at info-request@mcw.edu and include the study reference IB17-04.
Project description:Epigenetic modifications, such as aberrant DNA promoter methylation is frequently observed in cervical cancer. Identification of hypermethylated regions maybe useful for discrimination between normal cervical epithelium and high-grade cervical intraepithelial neoplasia (CIN2/3) or worse may improve current cervical cancer population-based screening programs. In this study, the DNA methylome of high-grade CIN lesions were characterised using genome-wide methylation screening to identify potential biomarkers for early diagnosis of cervical neoplasia. Methyl-DNA Immunoprecipitation (MeDIP) combined with DNA microarray was used to compare DNA methylation profiles of epithelial cells derived from high-grade CIN lesions with normal cervical epithelium resulting in the identification of hypermethylated differentially methylated regions (DMRs). Validation of 9 selected DMRs by MSP or BSP in cervical tissue revealed methylation in 63.2-94.7% high-grade CIN and in 59.3-100% cervical carcinomas. QMSP for the two most significant high-grade CIN-specific methylation markers was applied exploring test performance in a large series of cervical scrapings. Frequency and relative level of methylation were significantly different between normal and cancer samples (p<0.001). Clinical validation of both markers in cervical scrapings from patients referred with an abnormal cervical smear, confirmed that frequency and relative level of methylation were related with increasing severity of the underlying CIN lesion (p<0.001) and the ROC analysis was discriminative (p<0.005). These possible methylation markers represent COL25A1 and KATNAL2 promoters and their observed increased methylation upon progression is in agreement with their biological function (cytoskeleton regulation). In conclusion, our newly identified hypermethylated DMRs represent specific DNA methylation patterns in high-grade CIN lesions and could be potential biomarkers for early detection. Epigenetic modifications, such as aberrant DNA promoter methylation is frequently observed in cervical cancer. Identification of hypermethylated regions maybe useful for discrimination between normal cervical epithelium and high-grade cervical intraepithelial neoplasia (CIN2/3) or worse may improve current cervical cancer population-based screening programs. In this study, the DNA methylome of high-grade CIN lesions were characterised using genome-wide methylation screening to identify potential biomarkers for early diagnosis of cervical neoplasia. Methyl-DNA Immunoprecipitation (MeDIP) combined with DNA microarray was used to compare DNA methylation profiles of epithelial cells derived from high-grade CIN lesions with normal cervical epithelium resulting in the identification of hypermethylated differentially methylated regions (DMRs). Validation of 9 selected DMRs by MSP or BSP in cervical tissue revealed methylation in 63.2-94.7% high-grade CIN and in 59.3-100% cervical carcinomas. QMSP for the two most significant high-grade CIN-specific methylation markers was applied exploring test performance in a large series of cervical scrapings. Frequency and relative level of methylation were significantly different between normal and cancer samples (p<0.001). Clinical validation of both markers in cervical scrapings from patients referred with an abnormal cervical smear, confirmed that frequency and relative level of methylation were related with increasing severity of the underlying CIN lesion (p<0.001) and the ROC analysis was discriminative (p<0.005). These possible methylation markers represent COL25A1 and KATNAL2 promoters and their observed increased methylation upon progression is in agreement with their biological function (cytoskeleton regulation). In conclusion, our newly identified hypermethylated DMRs represent specific DNA methylation patterns in high-grade CIN lesions and could be potential biomarkers for early detection.
Project description:Epigenetic modifications, such as aberrant DNA promoter methylation is frequently observed in cervical cancer. Identification of hypermethylated regions maybe useful for discrimination between normal cervical epithelium and high-grade cervical intraepithelial neoplasia (CIN2/3) or worse may improve current cervical cancer population-based screening programs. In this study, the DNA methylome of high-grade CIN lesions were characterised using genome-wide methylation screening to identify potential biomarkers for early diagnosis of cervical neoplasia. Methyl-DNA Immunoprecipitation (MeDIP) combined with DNA microarray was used to compare DNA methylation profiles of epithelial cells derived from high-grade CIN lesions with normal cervical epithelium resulting in the identification of hypermethylated differentially methylated regions (DMRs). Validation of 9 selected DMRs by MSP or BSP in cervical tissue revealed methylation in 63.2-94.7% high-grade CIN and in 59.3-100% cervical carcinomas. QMSP for the two most significant high-grade CIN-specific methylation markers was applied exploring test performance in a large series of cervical scrapings. Frequency and relative level of methylation were significantly different between normal and cancer samples (p<0.001). Clinical validation of both markers in cervical scrapings from patients referred with an abnormal cervical smear, confirmed that frequency and relative level of methylation were related with increasing severity of the underlying CIN lesion (p<0.001) and the ROC analysis was discriminative (p<0.005). These possible methylation markers represent COL25A1 and KATNAL2 promoters and their observed increased methylation upon progression is in agreement with their biological function (cytoskeleton regulation). In conclusion, our newly identified hypermethylated DMRs represent specific DNA methylation patterns in high-grade CIN lesions and could be potential biomarkers for early detection. Epigenetic modifications, such as aberrant DNA promoter methylation is frequently observed in cervical cancer. Identification of hypermethylated regions maybe useful for discrimination between normal cervical epithelium and high-grade cervical intraepithelial neoplasia (CIN2/3) or worse may improve current cervical cancer population-based screening programs. In this study, the DNA methylome of high-grade CIN lesions were characterised using genome-wide methylation screening to identify potential biomarkers for early diagnosis of cervical neoplasia. Methyl-DNA Immunoprecipitation (MeDIP) combined with DNA microarray was used to compare DNA methylation profiles of epithelial cells derived from high-grade CIN lesions with normal cervical epithelium resulting in the identification of hypermethylated differentially methylated regions (DMRs). Validation of 9 selected DMRs by MSP or BSP in cervical tissue revealed methylation in 63.2-94.7% high-grade CIN and in 59.3-100% cervical carcinomas. QMSP for the two most significant high-grade CIN-specific methylation markers was applied exploring test performance in a large series of cervical scrapings. Frequency and relative level of methylation were significantly different between normal and cancer samples (p<0.001). Clinical validation of both markers in cervical scrapings from patients referred with an abnormal cervical smear, confirmed that frequency and relative level of methylation were related with increasing severity of the underlying CIN lesion (p<0.001) and the ROC analysis was discriminative (p<0.005). These possible methylation markers represent COL25A1 and KATNAL2 promoters and their observed increased methylation upon progression is in agreement with their biological function (cytoskeleton regulation). In conclusion, our newly identified hypermethylated DMRs represent specific DNA methylation patterns in high-grade CIN lesions and could be potential biomarkers for early detection. MeDIP with subsequent microarray analysis was performed on DNA isolated from frozen macrodissected epithelial tissue of CIN3 lesions (n=15) and normal cervices (n=10).
Project description:Identification of promoter methylation profile associated with cervical cancer progression. The Ilumina Infinium 27k Human DNA methylation Beadchip v1.2 was used to obtain DNA methylation profiles across approximately 27,000 CpGs from 19 cervical samples (including normal, CIN I-II, in situ and invasive cervical cancer tissues).
Project description:We pursued the hypothesis that epigenetic regulators of transcription are involved in both the development and the progression of HPV-associated CIN. Using HELP-tagging, we performed the most comprehensive study to date of DNA methylation in HPV-associated cervical neoplasia, testing ~2 million loci throughout the human genome in biopsies from 78 HPV+ women, identifying changes starting in early CIN and maintained through carcinogenesis. We identified loci at which DNA methylation is consistently altered, beginning early in the course of neoplastic disease and progressing with disease advancement. DNA methylation profiles for cervical biopsies of 19 normals, 20 CIN1, 16 CIN2/3, and 23 cervical cancers.
Project description:Genome-wide DNA methylation profiles in liquid based cytology (LBC) cervical scrapes samples was assessed using the Illumina Infinium Methylation850 BeadChip V1.0B4. The purpose of this study was to identify new candidate genes that are differentially methylated in squamous cell carcinoma compared to the DNA samples from cervical intraepithelial neoplasia grade (CIN) and normal cervical scrapes.
Project description:Using a genome-wide DNA methylation profiling of 186 cervical samples from women with different CIN grades and well-characterized HPV genotyping, we identified novel methylation markers of epigenetic changes that discriminate accurately between clinically significant and transient cervical disease. In particular, a 2-gene DNA methylation classifier (ATP10A and HAS1) showed a promising ability to discriminate among pre-invasive cervical lesion grades. The identified markers are excellent candidates for future diagnostic or prognostic assays in cervical cancer screening.
Project description:Identification of promoter methylation profile associated with cervical cancer progression. The Ilumina Infinium 27k Human DNA methylation Beadchip v1.2 was used to obtain DNA methylation profiles across approximately 27,000 CpGs from 19 cervical samples (including normal, CIN I-II, in situ and invasive cervical cancer tissues). Bisulphite converted DNA from the 19 samples were hybridised to the Illumina Infinium 27k Human Methylation Beadchip v1.2