Project description:Genome-wide profiling of DNA methylation in blood leukocytes from Chinese patients with mild cognitive impairment (MCI) and Alzheimer’s disease (AD). The Illumina Infinium MethylationEPIC BeadChip array (850K chip) was used to detect DNA methylation profiles throughout approximately 850,000 CpG sites in peripheral blood white cells of MCI- and AD-affected Chinese patients, as well as cognitively healthy controls. All samples included 20 Chinese patients with MCI, 20 Chinese patients with AD, and 20 cognitively healthy controls.
Project description:Epigenomics is developing a colon cancer screening assay based on differential methylation of specific CpG sites for the detection of early stage disease. A genome-wide methylation analysis and oligonucleotide array study using DNA from various stages of colon cancer and normal tissue have been completed to obtain candidate CpG markers. Based on results obtained in the above studies, Epigenomics has moved to the final stages of feasibility with a specific, highly sensitive real-time marker assay that is able to detect colon cancer DNA in blood plasma.
Project description:Genome wide DNA methylation profiling of cord blood cells obtained from normal glucose tolerance (NGT) pregnancies. The Illumina EPIC methylation beadchip array was used to obtain DNA methylation profiles across approximately 850,000 CpG dinucleotide methylation loci in DNA isolated from cord blood. Samples include 61 NGT subjects.
Project description:Genome wide DNA methylation profiling of cord blood cells obtained from gestational diabetes mellitus (GDM) pregnancies. The Illumina EPIC methylation beadchip array was used to obtain DNA methylation profiles across approximately 850,000 CpG dinucleotide methylation loci in DNA isolated from cord blood. Samples include 165 GDM subjects.
Project description:We describe a simple method, Digital Restriction Enzyme Analysis of Methylation (DREAM), based on sequential DNA digestion with a pair of methylation-blocked and methylation-tolerant neoschizomeric restriction enzymes SmaI/XmaI followed by end repair and ultra-deep sequencing. DREAM provides information on 160,000 unique CpG sites of which 39,000 are in CpG islands, and 33,000 are at transcription start sites (-1 kb to +1 kb) of 13,139 RefSeq genes. We compared DNA methylation values in white blood cells from 4 healthy individuals and found them to be remarkably uniform. Interindividual differences >30% were observed only at 227 of 28,331 (0.8%) of autosomal CCCGGG sites covered by 100+ sequencing reads. Similarly, differences at only 59 sites were observed between the cord and adult blood. Conserved methylation patterns in healthy blood cells contrasted with extensive changes affecting 18-40% of CpG sites in leukemia. The method is cost effective, quantitative (r2=0.93 when compared to bisulfite pyrosequencing), reproducible (r2=0.997), and can detect differences >25% with false positive rate <0.001. Accurate analysis of changes in DNA methylation will be useful in quantifying epigenetic effects of environment and nutrition, correlating developmental epigenetic variation with phenotypes, understanding epigenetics of cancer and chronic diseases, measuring the effects of drugs on DNA methylation or deriving new biological insights into mammalian genomes. Digital restriction enzyme analysis of methylation (DREAM) was performed to determine the DNA methylation profiles of healthy white blood cells from cord blood and adult blood, acute myeloid leukemia bone marrow, and two leukemia cell lines (HEL and K562). In this approach, genomic DNA is sequentially cut at CCCGGG sites with the methylation-sensitive enzyme SmaI (blunt ends) and its methylation-tolerant neoschizomer XmaI (5'CCGG overhangs), creating different end sequences that represent methylation status of the CCCGGG sites. These end sequences are analyzed by next-generation sequencing, and thereafter the methylation status at individual CCCGGG sites across the genome can be determined.
Project description:Genome wide DNA methylation profiling in the whole blood samples of healthy controls and major depression disorder (MDD) patients who have never been treated with depression medication. The Illumina Infinium 450k Human DNA methylation Beadchip can assay over 480K CpG sites with bisulfite-converted genomic DNA and has been widely used in methylome-wide association studies (MWAS). Samples included 40 healthy controls and 40 MDD patients who have never been treated with depression medication.
Project description:Methylation of cytosines at CpG sites is a common epigenetic DNA modification that can be measured by a large number of methods, now even in a genome-wide manner for hundreds of thousands of sites. The application of DNA methylation analysis is becoming widely popular in complex disorders, for example, to understand part of the “missing inheritance”. The DNA samples most readily available for methylation studies are derived from whole blood. However, blood consists of many functionally and developmentally distinct cell populations in varying proportions. We studied whether such variation might affect the interpretation of methylation studies based on whole blood DNA. We found in healthy male blood donors there is important variation in the methylation profiles of whole blood, mononuclear cells, granulocytes, and cells from seven selected purified lineages. CpG methylation between mononuclear cells and granulocytes differed for 22% of the 8252 probes covering the selected 343 genes implicated in immune-related disorders by genome-wide association studies, and at least one probe was differentially methylated for 85% of the genes, indicating that whole blood methylation results might be unintelligible. For individual genes, even if the overall methylation patterns might appear similar, a few CpG sites in the regulatory regions may have opposite methylation patterns (i.e., hypo/hyper) in the main blood cell types. We conclude that interpretation of whole blood methylation profiles should be performed with great caution and for any differences implicated in a disorder, the differences resulting from varying proportions of white blood cell types should be considered.
Project description:Epigenetic alternations in addition to genetic factors are important contributors to the pathogenesis of Systemic Lupus Erythematosus (SLE). Recent studies revealed that aberrant changes in DNA methylation occur in SLE patients, and potentially contributes to the pathogenesis. Using genome-wide DNA methylation microarray, the Illumina Infinium HumanMethylation450 BeadChip, we compared the DNA methylation level of white blood cells between Chinese female SLE patients with that of healthy controls. There was no difference in global levels of DNA methylation between SLE patients and controls. However, we identified 36 CpG sites with differential loss of DNA methylation and 8 CpG sites with differential gain of DNA methylation, representing 26 genes and 7 genes respectively. Surprisingly, nearly half of the hypomethylated CpG sites were located in the CpG shores, which implicated the functional importance of loss of DNA methylation in the CpG shores in SLE.
Project description:Methylation of cytosines at CpG sites is a common epigenetic DNA modification that can be measured by a large number of methods, now even in a genome-wide manner for hundreds of thousands of sites. The application of DNA methylation analysis is becoming widely popular in complex disorders, for example, to understand part of the “missing inheritance”. The DNA samples most readily available for methylation studies are derived from whole blood. However, blood consists of many functionally and developmentally distinct cell populations in varying proportions. We studied whether such variation might affect the interpretation of methylation studies based on whole blood DNA. We found in healthy male blood donors there is important variation in the methylation profiles of whole blood, mononuclear cells, granulocytes, and cells from seven selected purified lineages. CpG methylation between mononuclear cells and granulocytes differed for 22% of the 8252 probes covering the selected 343 genes implicated in immune-related disorders by genome-wide association studies, and at least one probe was differentially methylated for 85% of the genes, indicating that whole blood methylation results might be unintelligible. For individual genes, even if the overall methylation patterns might appear similar, a few CpG sites in the regulatory regions may have opposite methylation patterns (i.e., hypo/hyper) in the main blood cell types. We conclude that interpretation of whole blood methylation profiles should be performed with great caution and for any differences implicated in a disorder, the differences resulting from varying proportions of white blood cell types should be considered. Six healthy male blood donors, age 38 ± 13.6 years, were included in the study. From each individual, global DNA methylation levels were analyzed in whole blood, peripheral blood mononuclear cells (PBMC) and granulocytes as well as for seven isolated cell populations (CD4+ T cells, CD8+ T cells, CD56+ NK cells, CD19+ B cells, CD14+ monocytes, neutrophils, and eosinophils), n=60 samples analyzed in total.