Project description:The libraries generated by high-throughput single cell RNA-sequencing (scRNA-seq) platforms such as the Chromium from 10× Genomics require considerable amounts of sequencing, typically due to the large number of cells. The ability to use these data to address biological questions is directly impacted by the quality of the sequence data. Here we have compared the performance of the Illumina NextSeq 500 and NovaSeq 6000 against the BGI MGISEQ-2000 platform using identical Single Cell 3' libraries consisting of over 70 000 cells generated on the 10× Genomics Chromium platform. Our results demonstrate a highly comparable performance between the NovaSeq 6000 and MGISEQ-2000 in sequencing quality, and the detection of genes, cell barcodes, Unique Molecular Identifiers. The performance of the NextSeq 500 was also similarly comparable to the MGISEQ-2000 based on the same metrics. Data generated by both sequencing platforms yielded similar analytical outcomes for general single-cell analysis. The performance of the NextSeq 500 and MGISEQ-2000 were also comparable for the deconvolution of multiplexed cell pools via variant calling, and detection of guide RNA (gRNA) from a pooled CRISPR single-cell screen. Our study provides a benchmark for high-capacity sequencing platforms applied to high-throughput scRNA-seq libraries.
Project description:This experiment contains a subset of data from the BLUEPRINT Epigenome project ( http://www.blueprint-epigenome.eu ), which aims at producing a reference haemopoetic epigenomes for the research community. 29 samples of primary cells or cultured primary cells of different haemopoeitc lineages from cord blood are included in this experiment. This ArrayExpress record contains only meta-data. Raw data files have been archived at the European Genome-Phenome Archive (EGA, www.ebi.ac.uk/ega) by the consortium, with restricted access to protect sample donors' identity. The relevant accessions of EGA data sets is EGAD00001001165. Details on how to apply for data access via the BLUEPRINT data access committee are on the EGA data set pages. The mapping of samples to these EGA accessions can be found in the 'Sample Data Relationship Format' file of this ArrayExpress record. Information on individual samples and sequencing libraries can also be found on the BLUEPRINT data coordination centre (DCC) website: http://dcc.blueprint-epigenome.eu
Project description:This experiment contains a subset of data from the BLUEPRINT Epigenome project ( http://www.blueprint-epigenome.eu ), which aims at producing a reference haemopoetic epigenomes for the research community. 4 samples of primary cells from tonsil with cell surface markes CD20med/CD38high in young individuals (3 to 10 years old) are included in this experiment. This ArrayExpress record contains only meta-data. Raw data files have been archived at the European Genome-Phenome Archive (EGA, www.ebi.ac.uk/ega) by the consortium, with restricted access to protect sample donors' identity. The relevant accessions of EGA data sets is EGAD00001001523. Details on how to apply for data access via the BLUEPRINT data access committee are on the EGA data set pages. The mapping of samples to these EGA accessions can be found in the 'Sample Data Relationship Format' file of this ArrayExpress record. Information on individual samples and sequencing libraries can also be found on the BLUEPRINT data coordination centre (DCC) website: http://dcc.blueprint-epigenome.eu
Project description:Reprogramming of histone modification regulates gene expression and mammal preimplantation development. Trimethylation of lysine 4 on histone 3 (H3K4me3) has unique landscape in mouse oocytes and early embryos. However, the dynamics and function of H3K4me3 in livestock embryos remain unclear. To address how it is reprogrammed in domestic animals, we profiled changes of H3K4me3 during bovine early embryo development. Notably, the overall signal of H3K4me3 decreased during embryonic genome activation (EGA). By utilizing ultra-low-input native ChIP-seq (ULI-NChIP-seq) technology, we observed widespread broad H3K4me3 domains in oocytes and embryos. The signal of broad H3K4me3 began to decrease after fertilization and was lowest after EGA. Along with the removal of broad H3K4me3, deposition of H3K4me3 at promoter regions enhanced gradually. Besides, the transcriptional activity and signal of promoter H3K4me3 showed positive correlation after the erasure of broad H3K4me3 at 16-cell stage. Moreover, knocking down of demethylases KDM5A, KDM5B and KDM5C caused EGA delay and blastocyst formation failure. RNA-seq analysis revealed 47.8% down-regulated genes in knockdown embryos at 8/16-cell stage were EGA genes, and 63.1% of up-regulated genes were maternal transcripts. Particularly, the positive correlation between transcriptional activity and promoter H3K4me3 during EGA was restrained when knocking down of KDM5A, KDM5B and KDM5C. Overall, our work initiatively mapped the genomic reprogramming of H3K4me3 during bovine preimplantation development, and KDM5A/B/C played roles in modulating oocyte-to-embryonic transition (OET) through timely erasure of broad H3K4me3 domains far away from promoters.
Project description:Reprogramming of histone modification regulates gene expression and mammal preimplantation development. Trimethylation of lysine 4 on histone 3 (H3K4me3) has unique landscape in mouse oocytes and early embryos. However, the dynamics and function of H3K4me3 in livestock embryos remain unclear. To address how it is reprogrammed in domestic animals, we profiled changes of H3K4me3 during bovine early embryo development. Notably, the overall signal of H3K4me3 decreased during embryonic genome activation (EGA). By utilizing ultra-low-input native ChIP-seq (ULI-NChIP-seq) technology, we observed widespread broad H3K4me3 domains in oocytes and embryos. The signal of broad H3K4me3 began to decrease after fertilization and was lowest after EGA. Along with the removal of broad H3K4me3, deposition of H3K4me3 at promoter regions enhanced gradually. Besides, the transcriptional activity and signal of promoter H3K4me3 showed positive correlation after the erasure of broad H3K4me3 at 16-cell stage. Moreover, knocking down of demethylases KDM5A, KDM5B and KDM5C caused EGA delay and blastocyst formation failure. RNA-seq analysis revealed 47.8% down-regulated genes in knockdown embryos at 8/16-cell stage were EGA genes, and 63.1% of up-regulated genes were maternal transcripts. Particularly, the positive correlation between transcriptional activity and promoter H3K4me3 during EGA was restrained when knocking down of KDM5A, KDM5B and KDM5C. Overall, our work initiatively mapped the genomic reprogramming of H3K4me3 during bovine preimplantation development, and KDM5A/B/C played roles in modulating oocyte-to-embryonic transition (OET) through timely erasure of broad H3K4me3 domains far away from promoters.
Project description:Human exome sequencing is a classical method used in most medical genetic applications. The leaders in the field are the manufacturers of enrichment kits based on hybridization of cRNA or cDNA biotinylated probes specific for a genomic region of interest. Recently, the platforms manufactured by the Chinese company MGI Tech have become widespread in Europe and Asia. The reliability and quality of the obtained data are already beyond any doubt. However, only a few kits compatible with these sequencers can be used for such specific tasks as exome sequencing. We developed our own solution for library pre-capture pooling and exome enrichment with Agilent probes. In this work, using a set of the standard benchmark samples from the Platinum Genome collection, we demonstrate that the qualitative and quantitative parameters of our protocol which we called "RSMU_exome" exceed those of the MGI Tech kit. Our protocol allows for identifying more SNV and indels, generates fewer PCR duplicates, enables pooling of more samples in a single enrichment procedure, and requires less raw data to obtain results comparable with the MGI Tech's protocol. The cost of our protocol is also lower than that of MGI Tech's solution.
Project description:The freshwater snail Biomphalaria glabrata is closely associated with the transmission of human schistosomiasis. An ecologically sound method has been proposed to control schistosomiasis using genetically modified snails to displace endemic, susceptible ones. To assess the viability of this form of biological control, studies towards understanding the molecular makeup of the snail relative to the presence of endogenous mobile genetic elements are being undertaken since they can be exploited for genetic transformation studies. We previously cloned a 1.95kb BamHI fragment in B. glabrata (BGR2) with sequence similarity to the human long interspersed nuclear element (LINE or L1). A contiguous, full-length sequence corresponding to BGR2, hereafter-named nimbus (BgI), has been identified from a B. glabrata bacterial artificial chromosome (BAC) library. Sequence analysis of the 65,764bp BAC insert contained one full-length, complete nimbus (BgI) element (element I), two full-length elements (elements II and III) containing deletions and flanked by target site duplications and 10 truncated copies. The intact nimbus (BgI) contained two open-reading frames (ORFs 1 and 2) encoding the characteristic hallmark domains found in non-long terminal repeat retrotransposons belonging to the I-clade; a nucleic acid binding protein in ORF1 and an apurinic/apyrimidinic endonuclease, reverse transcriptase and RNase H in ORF2. Phylogenetic analysis revealed that nimbus (BgI) is closely related to Drosophila (I factor), mosquito Aedes aegypti (MosquI) and chordate ascidian Ciona intestinalis (CiI) retrotransposons. Nimbus (BgI) represents the first complete mobile element characterised from a mollusk that appears to be transcriptionally active and is widely distributed in snails of the neotropics and the Old World.
Project description:Following fertilization, the new embryo reprograms parental genomes to begin transcription (embryonic genome activation, EGA). EGA is indispensable for development, but its dynamics, profile or when it initiates in vertebrates are unknown. We here characterize the onset of transcription in mouse one-cell embryos. Precise embryo staging eliminated noise to reveal a cascading program of de novo transcription initiating within six hours of fertilization. This immediate EGA (iEGA) utilized canonical promoters, produced spliced transcripts, was distinctive and predominantly driven by the maternal genome. Expression represented pathways not only associated with embryo development but with cancer. In human one-cell embryos, hundreds of genes were up-regulated, days earlier than thought, with conservation to mouse iEGA. These findings provide a functional basis for epigenetic analysis in early-stage embryos and illuminate networks governing totipotency and other cell-fate transitions.