Project description:Background The genetic diversity of loci and mutations underlying hereditary hearing loss is an active area of investigation. To identify loci associated with predominantly non-syndromic sensorineural hearing loss, we performed exome sequencing of families and of single probands, as well as copy number variation (CNV) mapping in a case-control cohort. Results Analysis of three distinct families revealed several candidate loci in two families and a single strong candidate gene, MYH7B, for hearing loss in one family. MYH7B encodes a Type II myosin, consistent with a role for cytoskeletal proteins in hearing. High-resolution genome-wide CNV analysis of 150 cases and 157 controls revealed deletions in genes known to be involved in hearing (e.g. GJB6, OTOA, and STRC, encoding connexin 30, otoancorin, and stereocilin, respectively), supporting CNV contributions to hearing loss phenotypes. Additionally, a novel region on chromosome 16 containing part of the PDXDC1 gene was found to be frequently deleted in hearing loss patients (OR = 3.91, 95% CI: 1.62-9.40, p = 1.45 x 10-7). Conclusions We conclude that many known as well as novel loci and distinct types of mutations not typically tested in clinical settings can contribute to the etiology of hearing loss. Our study also demonstrates the challenges of exome sequencing and genome-wide CNV mapping for direct clinical application, and illustrates the need for functional and clinical follow-up as well as curated open-access databases. Single replicates of 151 non-syndromic hereditary hearing loss cases and 157 controls with normal hearing were analyzed.
Project description:Background The genetic diversity of loci and mutations underlying hereditary hearing loss is an active area of investigation. To identify loci associated with predominantly non-syndromic sensorineural hearing loss, we performed exome sequencing of families and of single probands, as well as copy number variation (CNV) mapping in a case-control cohort. Results Analysis of three distinct families revealed several candidate loci in two families and a single strong candidate gene, MYH7B, for hearing loss in one family. MYH7B encodes a Type II myosin, consistent with a role for cytoskeletal proteins in hearing. High-resolution genome-wide CNV analysis of 150 cases and 157 controls revealed deletions in genes known to be involved in hearing (e.g. GJB6, OTOA, and STRC, encoding connexin 30, otoancorin, and stereocilin, respectively), supporting CNV contributions to hearing loss phenotypes. Additionally, a novel region on chromosome 16 containing part of the PDXDC1 gene was found to be frequently deleted in hearing loss patients (OR = 3.91, 95% CI: 1.62-9.40, p = 1.45 x 10-7). Conclusions We conclude that many known as well as novel loci and distinct types of mutations not typically tested in clinical settings can contribute to the etiology of hearing loss. Our study also demonstrates the challenges of exome sequencing and genome-wide CNV mapping for direct clinical application, and illustrates the need for functional and clinical follow-up as well as curated open-access databases.
Project description:Age-related hearing loss (AHL) is the progressive loss of auditory function with aging. The DBA/2J (DBA) mice have been used as a model of AHL and undergoes progressive, age-related hearing loss by 12 weeks of age. Here we analyzed cochlear gene expression of 7-week-old and 36-week-old DBA mice using microarrays. Auditory brainstem response (ABR) analysis confrimed that severe age-related hearing loss occured in 36-week-old mice, whereas moderate hearing loss occured in 7-week-old mice. Comprehensive gene expression analysis identified genes correlated with AHL and revealeed that 15 mitochondrial process categories, including â??mitochondrial electron transport chainâ??, â??oxidative phosphorylationâ??, â??respiratory chain complex Iâ??, â??respiratory chain complex IVâ??, and â??respiratory chain complex Vâ??, were statistically associated with AHL-correlated genes in the cochlea of 36-week-old DBA mice, and that 25 genes encoding components of the mitochondrial respiratory chain (respiratory chain complex I, IV, and V) were significantly down-regulated in the cochlea. These observations provide evidence that AHL is associated with down-regulation of genes involved in the mitochondrial respiratory chain in the cochlea of DBA mice, and suggest that mitochondrial respiratory chain dysfunction may be a key feature of AHL in mammalian cochlea. Experiment Overall Design: To determine the effects of age-related hearing loss, each 7-week-old sample (n = 3) was compared to each 36-week-old sample (n = 3), generating a total of nine pairwise comparisons. Using DAVIS and EASE, the identified genes were assign to â??GO: Biological Processâ?? categories of Gene Ontology Consortium. Furthermore, we used EASE to determine the total number of genes that were assigned to each biological process category, and to perform Fisher exact test. Quality control measures were not used. No replicates were done. Dye swap was not used.
Project description:Activating transcription factor 6 (Atf6) is a key regulator of the unfolded protein response (UPR) and is important for endoplasmic reticulum (ER) function and protein homeostasis in metazoan cells. Patients carrying loss-of-function ATF6 disease alleles develop the cone dysfunction disorder, achromatopsia. The impact of loss of ATF6 function on other cell types, organs, and diseases in people remains unclear. Here, we reported that progressive sensorineural hearing loss was a notable complaint in some patients carrying ATF6 disease alleles and that Atf6-/- mice also showed progressive auditory deficits affecting both genders. In mice with hearing deficits, we found disorganized stereocilia on hair cells and focal loss of outer hair cells. Transcriptomic analysis of Atf6-/- cochleae revealed marked induction of UPR, especially through the PERK arm. These findings identify ATF6 as an essential regulator of cochlear health and function. Furthermore, they supported that ATF6 inactivation in people causes progressive sensorineural hearing loss as part of a blindness-deafness genetic syndrome targeting hair cells and cone photoreceptors. Lastly, our genetic findings support ER stress as an important pathomechanism underlying cochlear damage and hearing loss with clinical implications for patient lifestyle modifications that minimize environmental/physiologic sources of ER stress to the ear.
Project description:Objectives: Despite recent advancements in diagnostic tools, the genomic landscape of hereditary hearing loss remains largely uncharacterized. One strategy to understand genome-wide aberrations includes the analysis of copy number variation that can be mapped using SNP-microarray technology. A growing collection of literature has begun to uncover the importance of copy number variation in hereditary hearing loss. This pilot study underpins a larger effort that involves the stage-wise analysis of hearing loss patients, many of whom have advanced to high-throughput sequencing analysis. Data description: Our data originate from Infinium HumanOmni1-Quad v1.0 SNP-microarrays (Illumina) that provide useful markers for genome-wide association studies and copy number variation analysis. This dataset comprises a cohort of 108 individuals (99 with hearing loss, 9 normal hearing family members) for the purpose of understanding the genetic contribution of copy number variations to hereditary hearing loss.
Project description:Age-related hearing loss (AHL) is the progressive loss of auditory function with aging. The DBA/2J (DBA) mice have been used as a model of AHL and undergoes progressive, age-related hearing loss by 12 weeks of age. Here we analyzed cochlear gene expression of 7-week-old and 36-week-old DBA mice using microarrays. Auditory brainstem response (ABR) analysis confrimed that severe age-related hearing loss occured in 36-week-old mice, whereas moderate hearing loss occured in 7-week-old mice. Comprehensive gene expression analysis identified genes correlated with AHL and revealeed that 15 mitochondrial process categories, including “mitochondrial electron transport chain”, “oxidative phosphorylation”, “respiratory chain complex I”, “respiratory chain complex IV”, and “respiratory chain complex V”, were statistically associated with AHL-correlated genes in the cochlea of 36-week-old DBA mice, and that 25 genes encoding components of the mitochondrial respiratory chain (respiratory chain complex I, IV, and V) were significantly down-regulated in the cochlea. These observations provide evidence that AHL is associated with down-regulation of genes involved in the mitochondrial respiratory chain in the cochlea of DBA mice, and suggest that mitochondrial respiratory chain dysfunction may be a key feature of AHL in mammalian cochlea. Keywords: Disease state analysis, Time course analysis
Project description:<p>Our goal is to find genes responsible for non-syndromic sensorineural hearing loss. Blood samples were collected from the JS6 family affected with hearing loss. The family is of Caribbean Hispanic ethnicity. Family JS6 consisted of two deaf siblings, JS6.001 (Male) and JS6.002 (Female) and healthy parents, JS6.100 (mother) and JS6.200 (father). The siblings had no other medical findings. Audiometry tests and Rinne and Weber tuning fork tests identified sensorineural hearing loss in the two siblings. We performed whole exome sequencing of the four individuals and identified a recessive mutation, p.(Arg186Trp), in the CIB2 gene in the two affected siblings. Both parents were unaffected carriers. </p>
Project description:Hearing mediates many behaviors critical for survival in echolocating bats, including foraging and navigation. Although most mammals are susceptible to progressive age-related hearing loss, the evolution of biosonar, which requires the ability to hear low-intensity echoes from outgoing sonar signals, may have selected against the development of hearing deficits in bats. Many echolocating bats exhibit exceptional longevity and rely on acoustic behaviors for survival to old age; however relatively little is known about the aging bat auditory system. In this study, we used DNA methylation to estimate the ages of wild-caught big brown bats (Eptesicus fuscus) and measured hearing sensitivity in young and aging bats using auditory brainstem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs). We found no evidence for hearing deficits in bats up to 12.5 years of age, demonstrated by comparable thresholds and similar ABR and DPOAE amplitudes across age groups. We additionally found no significant histological evidence for cochlear aging, with similar hair cell counts, afferent, and efferent innervation patterns in young and aging bats. Here we demonstrate that big brown bats show minimal evidence for age-related hearing loss and therefore represent informative models for investigating mechanisms that may preserve hearing function over a long lifetime.