Project description:Acute lymphoblastic leukaemia occurs in both children and adults but its incidence peaks between 2 and 5 years of age. Causation is multifactorial and exogenous or endogenous exposures, genetic susceptibility, and chance have roles. Survival in paediatric acute lymphoblastic leukaemia has improved to roughly 90% in trials with risk stratification by biological features of leukaemic cells and response to treatment, treatment modification based on patients' pharmacodynamics and pharmacogenomics, and improved supportive care. However, innovative approaches are needed to further improve survival while reducing adverse effects. Prognosis remains poor in infants and adults. Genome-wide profiling of germline and leukaemic cell DNA has identified novel submicroscopic structural genetic changes and sequence mutations that contribute to leukaemogenesis, define new disease subtypes, affect responsiveness to treatment, and might provide novel prognostic markers and therapeutic targets for personalised medicine.
Project description:Modifications to the treatment of acute lymphoblastic leukaemia (ALL) in children have led to a dramatic increase in survival in the past 40 years. Despite this success, a significant subset of paediatric leukaemia patients either relapse or fail to ever achieve a complete remission. Additionally, some patients necessitate treatment with intensified chemotherapy regimens due to clinical or laboratory findings which identify them as high risk. These patients are unlikely to respond to further minor adjustments to the dosing or timing of administration of the same chemotherapy medications. Many novel targeted therapies for the treatment of childhood ALL provide potential mechanisms to further improve cure rates, and provide the possibility of minimizing toxicity to non-malignant cells, given their specificity to malignant cell phenotypes. This article explores many of the potential targeted therapies in varying stages of development, from those currently in clinical trials to those still being refined in the research laboratory.
Project description:Infant T-cell acute lymphoblastic leukaemia (iT-ALL) is a very rare and poorly defined entity with a poor prognosis. We assembled a unique series of 13 infants with T-ALL, which allowed us to identify genotypic abnormalities and to investigate prenatal origins. Matched samples (diagnosis/remission) were analysed by single nucleotide polymorphism-array to identify genomic losses and gains. In three cases, we identified a recurrent somatic deletion on chromosome 3. These losses result in the complete deletion of MLF1 and have not previously been described in T-ALL. We observed two cases with an 11p13 deletion (LMO2-related), one of which also harboured a deletion of RB1. Another case presented a large 11q14·1-11q23·2 deletion that included ATM and only five patients (38%) showed deletions of CDKN2A/B. Four cases showed NOTCH1 mutations; in one case FBXW7 was the sole mutation and three cases showed alterations in PTEN. KMT2A rearrangements (KMT2A-r) were detected in three out of 13 cases. For three patients, mutations and copy number alterations (including deletion of PTEN) could be backtracked to birth using neonatal blood spot DNA, demonstrating an in utero origin. Overall, our data indicates that iT-ALL has a diverse but distinctive profile of genotypic abnormalities when compared to T-ALL in older children and adults.
Project description:The last decade has seen a significant leap in our understanding of the wide range of genetic lesions underpinning acute lymphoblastic leukaemia (ALL). Next generation sequencing has led to the identification of driver mutations with significant implications on prognosis and has defined entities such as BCR-ABL-like ALL, where targeted therapies such as tyrosine kinase inhibitors (TKIs) and JAK inhibitors may play a role in its treatment. In Philadelphia positive ALL, the introduction of TKIs into frontline treatment regimens has already transformed patient outcomes. In B-ALL, agents targeting surface receptors CD19, CD20 and CD22, including monoclonal antibodies, bispecific T cell engagers, antibody drug conjugates and chimeric antigen receptor (CAR) T cells, have shown significant activity but come with unique toxicities and have implications for how treatment is sequenced. Advances in T-ALL have lagged behind those seen in B-ALL. However, agents such as nelarabine, bortezomib and CAR T cell therapy targeting T cell antigens have been examined with promising results seen. As our understanding of disease biology in ALL grows, as does our ability to target pathways such as apoptosis, through BH3 mimetics, chemokines and epigenetic regulators. This review aims to highlight a range of available and emerging targeted therapeutics in ALL, to explore their mechanisms of action and to discuss the current evidence for their use.
Project description:Infant T-cell Acute Lymphoblastic Leukaemia (iT-ALL) is a very rare and poorly defined entity with a poor prognosis. We assembled a unique series of thirteen cases of infants with T-ALL which allowed us to identify genotypic abnormalities and to investigate prenatal origins. Matched samples (diagnosis/remission) were analysed by SNP-array to identify genomic losses and gains. In three cases, we identified a recurrent somatic chromosome 3 deletion. These losses, confirmed by FISH, result in the complete deletion of MLF1, not previously described in T-ALL. We observed two cases with an 11p13 deletion (LMO2-related), one of which also harboured a deletion of RB1. Another case presented a large 11q14.1-11q23.2 deletion that included ATM and only five patients (38%) showed deletions of CDKN2A/B. Four cases showed NOTCH1 mutations, in one case FBXW7 was the sole mutation and three cases showed alterations in PTEN. MLL rearrangements (MLL-r) were detected in three out of thirteen cases. For three patients, mutations and CNAs could be backtracked to birth using neonatal blood spot DNA, demonstrating an in utero origin. Overall, our data indicates iT-ALL has a diverse but distinctive profile of genotypic abnormalities when compared to T-ALL in older children and adults. Affymetrix SNP6.0 arrays were performed according to the manufacturer's directions on DNA extracted from diagnostic bone marrow or peripheral blood samples. Copy number analyses of Affymetrix SNP6.0 arrays were performed for 13 infant T-ALL samples.
Project description:There is increasing evidence for a strong inherited genetic basis of susceptibility to acute lymphoblastic leukaemia (ALL) in children. To identify new risk variants for B-cell ALL (B-ALL) we conducted a meta-analysis with four GWAS (genome-wide association studies), totalling 5321 cases and 16,666 controls of European descent. We herein describe novel risk loci for B-ALL at 9q21.31 (rs76925697, P = 2.11 × 10-8), for high-hyperdiploid ALL at 5q31.1 (rs886285, P = 1.56 × 10-8) and 6p21.31 (rs210143 in BAK1, P = 2.21 × 10-8), and ETV6-RUNX1 ALL at 17q21.32 (rs10853104 in IGF2BP1, P = 1.82 × 10-8). Particularly notable are the pleiotropic effects of the BAK1 variant on multiple haematological malignancies and specific effects of IGF2BP1 on ETV6-RUNX1 ALL evidenced by both germline and somatic genomic analyses. Integration of GWAS signals with transcriptomic/epigenomic profiling and 3D chromatin interaction data for these leukaemia risk loci suggests deregulation of B-cell development and the cell cycle as central mechanisms governing genetic susceptibility to ALL.