Project description:This dataset includes gene expression data from 103 primary tumour samples. 86 samples from this dataset have already been deposited into GEO (GSE36924), and has been duplicated here since the data has been processed differently. This data is also available through the International Cancer Genome Consortium (ICGC) Data Portal (http://dcc/icgc.org), under the project code: Pancreatic Cancer (QCMG, AU). Access to the restricted clinical data must be made through the ICGC Data Access Compliance Office (http://www.icgc.org/daco).
Project description:Background Cancer metabolism influences multiple aspects of tumorigenesis and causes diversity across malignancies. Although comprehensive research has extended our knowledge of molecular subgroups in medulloblastoma (MB), discrete analysis of metabolic heterogeneity is currently lacking. This study seeks to improve our understanding of metabolic phenotypes in MB and their impact on patients’ outcomes. Methods Data from four independent MB cohorts encompassing 1,288 patients were analysed. We explored metabolic characteristics of 902 patients (ICGC and MAGIC cohorts) on bulk RNA level. Moreover, data from 491 patients (ICGC cohort) were searched for DNA alterations in genes regulating cell metabolism. To determine the role of intratumoral metabolic differences, we examined single-cell RNA-sequencing (scRNA-seq) data from 34 additional patients. Findings on metabolic heterogeneity were correlated to clinical data. Results Established MB groups exhibit substantial differences in metabolic gene expression. By employing unsupervised analyses, we identified three clusters of group 3 and 4 samples with distinct metabolic features in ICGC and MAGIC cohorts. Analysis of scRNA-seq data confirmed our results of intertumoral heterogeneity underlying the according differences in metabolic gene expression. On DNA level, we discovered clear associations between altered regulatory genes involved in MB development and lipid metabolism. Additionally, we determined the prognostic value of metabolic gene expression in MB and showed that expression of genes involved in metabolism of inositol phosphates and nucleotides correlates with patient survival. Conclusion Our research underlines the biological and clinical relevance of metabolic alterations in MB. Thus, distinct metabolic signatures presented here might be the first step towards future metabolism-targeted therapeutic options.
Project description:Affymetrix SNP6 profiling of 1087 medulloblastoma samples and 10 medulloblastoma cell lines. Genomic DNA was extracted from primary medulloblastoma samples and medulloblastoma cell lines and hybridized to Affymetrix SNP6 arrays according to the manufacturer's instructions.
Project description:Current therapies for medulloblastoma, a highly malignant childhood brain tumour, impose debilitating effects on the developing child, and highlight the need for molecularly targeted treatments with reduced toxicity. Previous studies have been unable to identify the full spectrum of driver genes and molecular processes that operate in medulloblastoma subgroups. Here we analyse the somatic landscape across 491 sequenced medulloblastoma samples and the molecular heterogeneity among 1,256 epigenetically analysed cases, and identify subgroup-specific driver alterations that include previously undiscovered actionable targets. Driver mutations were confidently assigned to most patients belonging to Group 3 and Group 4 medulloblastoma subgroups, greatly enhancing previous knowledge. New molecular subtypes were differentially enriched for specific driver events, including hotspot in-frame insertions that target KBTBD4 and 'enhancer hijacking' events that activate PRDM6. Thus, the application of integrative genomics to an extensive cohort of clinical samples derived from a single childhood cancer entity revealed a series of cancer genes and biologically relevant subtype diversity that represent attractive therapeutic targets for the treatment of patients with medulloblastoma.