Whole exome sequencing of Finnish hereditary breast cancer families
Ontology highlight
ABSTRACT: A remarkable proportion of factors causing genetic predisposition to breast cancer (BC) are unknown in non-BRCA1/2 families. Exome sequencing was performed for 13 high-risk Finnish hereditary breast and/or ovarian cancer (HBOC) families to detect variants contributing to BC susceptibility
Project description:89 tumors from women that were eligible for, and subjected to, routine diagnostic testing according to the HBOC criteria but were negative for pathogenic BRCA1/2-mutations or carried an UV in either BRCA1/2 A BRCA2-classifier was built using array-CGH profiles of 28 BRCA2-mutated and 28 sporadic breast tumors. The classifier was validated on an independent group of 19 BRCA2-mutated and 19 sporadic breast tumors. Subsequently, we tested 89 breast tumors from suspected hereditary breast (and ovarian) cancer (HBOC) families, in which either no BRCA1/2 mutation or an UV had been found by routine diagnostics.
Project description:In more than 70% of families with a strong history of breast and ovarian cancers, pathogenic mutation in BRCA1 or BRCA2 cannot be identified, even though hereditary factors are expected to be involved. It has been proposed that tumors with similar molecular phenotypes also share similar pathophysiological mechanisms. Grouping into molecularly homogeneous subsets may therefore be of potential value for further genetic analysis in order to identify new high penetrance breast cancer genes. In the current study, the aim was to investigate if global RNA profiling can be used to identify functional subgroups within breast tumors from families tested negative for BRCA1/2 germline mutations and how these subgroupings relate to different breast cancer patients within the same family. By analyzing a collection of 70 breast tumor biopsies from 58 families, we show that distinct functional subgroupings, similar to the intrinsic molecular breast cancer subtypes, exist. The distribution of subtypes was markedly different from the distribution found among BRCA1/2 mutation carriers. From 11 breast cancer families, breast tumor biopsies from more than one affected family member were included in the study. Notably, in 8 of these families we found that patients from the same family shared the same tumor subtype, showing a tendency of familial aggregation of tumor subtypes (p-value = 1.7e-3). Our finding indicates involvement of hereditary factors in these families in which family members may carry genetic susceptibility not just to breast cancer but to a particular subtype of breast cancer. Using our previously developed BRCA1/2-signatures, we identified 7 non-BRCA1/2 tumors with a BRCA1-like molecular phenotype and provide evidence for epigenetic inactivation of BRCA1 in three of the tumors. In addition, 7 BRCA2-like tumors were found. This is the first study to provide a biological link between breast cancers from family members of high risk non-BRCA1/2 families in a systematic manner, suggesting that future genetic analysis may benefit from subgrouping families into molecularly homogeneous subtypes in order to identify new high penetrance susceptibility genes. Gene expression profiling of 253 breast tumor samples. Breast tumor tissue from 125 patients with germline mutations in BRCA1 (n = 33) or BRCA2 (n = 22) or with no detectable germline mutation in BRCA1 or BRCA2 (n = 70) were included in the study. Serving as a representative control group, primary breast tumor samples (n = 128) were randomly selected among available samples originating from the same department and time period as for the hereditary samples. The study was conducted using Agilent-029949 Custom SurePrint G3 Human GE 8x60K Microarray platform.
Project description:In more than 70% of families with a strong history of breast and ovarian cancers, pathogenic mutation in BRCA1 or BRCA2 cannot be identified, even though hereditary factors are expected to be involved. It has been proposed that tumors with similar molecular phenotypes also share similar pathophysiological mechanisms. Grouping into molecularly homogeneous subsets may therefore be of potential value for further genetic analysis in order to identify new high penetrance breast cancer genes. In the current study, the aim was to investigate if global RNA profiling can be used to identify functional subgroups within breast tumors from families tested negative for BRCA1/2 germline mutations and how these subgroupings relate to different breast cancer patients within the same family. By analyzing a collection of 70 breast tumor biopsies from 58 families, we show that distinct functional subgroupings, similar to the intrinsic molecular breast cancer subtypes, exist. The distribution of subtypes was markedly different from the distribution found among BRCA1/2 mutation carriers. From 11 breast cancer families, breast tumor biopsies from more than one affected family member were included in the study. Notably, in 8 of these families we found that patients from the same family shared the same tumor subtype, showing a tendency of familial aggregation of tumor subtypes (p-value = 1.7e-3). Our finding indicates involvement of hereditary factors in these families in which family members may carry genetic susceptibility not just to breast cancer but to a particular subtype of breast cancer. Using our previously developed BRCA1/2-signatures, we identified 7 non-BRCA1/2 tumors with a BRCA1-like molecular phenotype and provide evidence for epigenetic inactivation of BRCA1 in three of the tumors. In addition, 7 BRCA2-like tumors were found. This is the first study to provide a biological link between breast cancers from family members of high risk non-BRCA1/2 families in a systematic manner, suggesting that future genetic analysis may benefit from subgrouping families into molecularly homogeneous subtypes in order to identify new high penetrance susceptibility genes.
Project description:Genomic profile of 47 tumors from hereditary breast cancer cases by Array CGH, 7 of which were BRCA mutation carriers (4 in BRCA2 and 3 in BRCA1), previously analyzed for BRCA1 expression by immunohistochemistry. Our goal was to identify specific alterations for BRCA1 not expressing tumors
Project description:Genomic profile of 47 tumors from hereditary breast cancer cases by Array CGH, 7 of which were BRCA mutation carriers (4 in BRCA2 and 3 in BRCA1), previously analyzed for BRCA1 expression by immunohistochemistry. Our goal was to identify specific alterations for BRCA1 not expressing tumors DNA from 47 Tumors versus DNA pool from normal tissue. BRCA1 expression, Hierarchical clustering and overall survival analyses.
Project description:Approximately 25% of hereditary breast cancer cases associated with a strong familial history can be explained by mutations in BRCA1 or BRCA2 and other lower penetrance genes. The remaining high-risk families could be classified as BRCAX (non-BRCA1/2) families, in which no penetrant mutation has been found until now. Gene expression involving alternative splicing represents a well-known mechanism regulating the expression of multiple transcripts encoded by individual genes, which could be involved in cancer development. Thus using RNA-seq methodology, the analysis of transcriptome in immortalized lymphoblastoid cell lines of high-risk breast cancer individuals could reveal transcripts implicated in breast cancer susceptibility and development. RNA was extracted from immortalized lymphoblastoid cell lines of 117 women (affected and unaffected) coming from BRCA1, BRCA2 and BRCAX families. Anova analysis revealed a total of 95 transcripts corresponding to 85 different genes differentially expressed (Bonferroni corrected p-value <0.01) between those groups. Hierarchical clustering allowed distinctive subgrouping of BRCA1/2 subgroups from BRCAX individuals, without regard for the cancer status. We found enrichment for pathways in signaling cascades including mTOR and EIF2-related pathways. No transcripts were differentially expressed between BRCA1 and BRCA2 individuals, however out of 95 transcripts, 67 could discriminate BRCAX from combination of BRCA1 and BRCA2 individuals. On the other hand, 28 transcripts could discriminate affected from unaffected BRCAX individuals. These BRCAX-associated transcripts demonstrated enrichment in Telomere Extension by Telomerase and Double-Strand Break Repair by Non-Homologous End Joining mechanisms. To our knowledge, this represents the first study identifying transcripts differentially expressed in immortalized lymphoblastoid cell lines coming from the major classes of mutation-related breast cancer subgroups, namely BRCA1, BRCA2 and BRCAX. Moreover, some transcripts could discriminate affected from unaffected BRCAX individuals, which could represent potential therapeutic targets for breast cancer treatment.
Project description:The objective of the study was to characterize hereditary breast tumors based on their miRNA expression profiles. To this end, we performed global miRNA expression analysis of more than 800 human miRNA genes in a large series of 80 FFPE breast tissue samples. The series included 66 hereditary breast primary tumors from 13 BRCA1 mutation carriers, 10 BRCA2 mutation carriers and 43 non-BRCA12 tumors denominated hereafter as BRCAX tumors. In addition we have analyzed 10 sporadic breast carcinomas and 4 normal breast tissues obtained after breast reduction surgery from healthy donors with no family history of breast cancer. To avoid contamination with normal breast tissue, tumoral area on FFPE blocks was marked by a pathologist and macrodissected for subsequent total RNA extraction.
Project description:Heredity is a major risk factor for ovarian cancer, but many families escape detection. Refined diagnosis of ovarian cancers linked to the breast and ovarian cancer (HBOC) syndrome and the hereditary nonpolyposis colorectal cancer (HNPCC) syndrome would allow cancer prevention in high risk families. In order to delineate genetic profiles of hereditary ovarian cancer, we applied genome wide array comparative genomic hybridization to 24 sporadic tumors, 12 HBOC associated tumors (BRCA1 mutations) and eight HNPCC associated tumors (mismatch repair gene mutations). Unsupervised cluster analysis identified two distinctive clusters related to genetic complexity. Most sporadic and HBOC associated tumors had complex genetic profiles with multiple gains and losses with an average of 41% of the genome altered, whereas mismatch repair defective tumors had stable genetic profiles, with an average of 18% of the genome altered. Losses of 4q34, 13q12-q32 and 19p13 were overrepresented in the HBOC subset, gains of chromosomes 17 and 19 characterized the HNPCC tumors and gains of 20q11 were more common in the sporadic tumors. The genetic distinction between HBOC and HNPCC associated ovarian cancer suggests that genetic profiles can be applied for refined classification of hereditary cases and reflects tumor development along different genetic pathways.