Project description:TREX2 is a keratinocyte specific 3â-deoxyribonuclease that participates in the maintenance of skin homeostasis upon damage. This transcriptome analysis identified multiple genes and pathways deregulated by TREX2 loss in the IMQ-induced psoriasis-like model in mouse skin. mRNA sequencing of 5 biological replicates of skin from wild-type mice treated with Imiquimod and 6 of Trex2 knockout mice treated with Imiquimod
Project description:TREX2 is a keratinocyte specific 3’-deoxyribonuclease that participates in the maintenance of skin homeostasis upon damage. This transcriptome analysis identified multiple genes and pathways deregulated by TREX2 loss in the IMQ-induced psoriasis-like model in mouse skin.
Project description:Epidermal homeostasis is governed by a balance between keratinocyte proliferation and differentiation with contributions from cell-cell interactions, but conserved or divergent mechanisms governing this equilibrium across species, and how an imbalance contributes to skin disease, are largely undefined. To address these questions, human skin single-cell RNA-sequencing (scRNA-seq) and spatial transcriptomics (ST) data were integrated and compared to mouse skin data. Human skin cell type annotation was improved by using matched ST data, highlighting the importance of spatial context in cell type identity, and ST refined cellular communication inference. In cross-species analyses, we identified a human spinous keratinocyte subpopulation that exhibited proliferative capacity and a heavy-metal processing signature, which was absent in mouse and may account for species differences in epidermal thickness. This human subpopulation was expanded in psoriasis and zinc-deficiency dermatitis, attesting to disease relevance and suggesting a paradigm of subpopulation dysfunction as a hallmark of disease. To assess additional potential subpopulation drivers of skin diseases, we performed cell-of-origin enrichment analysis within genodermatoses, nominating pathogenic cell subpopulations and their communication pathways, which highlighted multiple potential therapeutic targets. This integrated dataset is encompassed in a publicly available web resource to aid mechanistic and translational studies of normal and diseased skin.
Project description:Environmental air pollution such as diesel smoke emission has been shown to have an adverse effect on human skin. Although epidemiological studies showing adverse effects such as oxidative stress-induced aging exists, studies showing the cellular and molecular response to such stress are rare. Using a primary skin keratinocyte model and TMT-based quantitative proteomics strategy, we studied the effects of chronic exposure to diesel particulate matter (DPE) and DPE vapor on the cellular proteome and the ability of a known anti-oxidant Vitamin E in ameliorating such changes. LC-MS3 analysis of DPE and/or its vapor exposed skin keratinocytes resulted in quantification of 4,490 proteins of which 201 and 374 proteins were significantly dysregulated (≥1.5 fold, p-value ≥0.05) in each condition, respectively. We observed distinct molecular alterations in chronic DPE and DPE vapor exposure models. Dysregulation of several cellular processes such as cell cycle and gene regulation, oxidative stress response proteins, skin barrier integrity and skin hydration were observed in both DPE and DPE vapor exposed cells.
Project description:Palmoplantar skin is structurally and functionally unique, but the transcriptional programs driving this specialization are unknown. Here, we exploit bulk and single-cell RNA-sequencing of human palm, sole, and hip skin to describe the distinguishing characteristics of palmoplantar and non-palmoplantar skin while also uncovering previously unappreciated differences between palmar and plantar sites. Our approach reveals downregulation of diverse immunological processes and decreased immune cell populations in palmoplantar skin, highlighting an altered immune environment in the skin of the palms and soles. Further, we identify specific palmoplantar and non-palmoplantar fibroblast populations that appear to orchestrate key differences in cell-cell communication in palm, sole, and hip. Dedicated analysis of epidermal keratinocytes highlights major differences in basal cell fraction among the three sites and validates the presence of a more differentiated, cycling basal population. Finally, our data demonstrate the existence of two spinous keratinocyte populations that constitute two parallel, site-selective epidermal differentiation trajectories. Together, these results provide a deep characterization of the highly adapted palmoplantar skin and contribute new insights into the fundamental biology of human skin.
Project description:The incidence of keratinocyte-derived skin cancer, cutaneous squamous cell carcinoma (cSCC) is increasing worldwide making it the second most common metastatic skin cancer. In this project we used SOLiD next generation sequencing to characterize gene expression profiles in normal human epidermal keratinocytes (NHEKs) and cSCC cell lines. Total RNAs from normal human epidermal keratinocytes (NHEKs) (n=4) and cSCC cell lines (n=8) were extracted. The samples were sequenced using SOLiD next generation sequencing.
Project description:Skin toxicity is a frequently observed side effect in the era of "molecularly targeted therapies". Skin toxicity following administration of protein kinase inhibitors such as sorafenib, regorafenib, lapatinib, sunitinib, and others can be debilitating to the patient, resulting in dose reduction and discontinuation of treatment. The mechanisms of skin toxicity induced by targeted chemotherapy, such as sorafenib or regorafenib, are poorly understood. Further research is warranted to better understand the pathophysiology of drug-related skin toxicity in this setting and develop correction strategies. This study tests the hypothesis that sorafenib and regorafenib interfere with p63 expression and keratinocyte differentiation and skin remodeling.
Eligible study participants will be evaluated clinically for evidence of skin toxicity during their visits to the outpatient Oncology clinics. Study participants will undergo skin biopsies before sorafenib or regorafenib treatment is initiated and once rash develops or 12 weeks into treatment with sorafenib or regorafenib. Skin biopsies will be performed in Oncology clinics by the study investigators and clinic support staff.
Study participants will undergo both skin biopsies regardless of whether they develop a rash. In patients who develop a rash the most representative lesion will be biopsied. A normal appearing area of skin will be biopsied in participants who do not develop a rash.