Project description:This experiment contains a subset of data from the BLUEPRINT Epigenome project ( http://www.blueprint-epigenome.eu ), which aims at producing a reference haemopoetic epigenomes for the research community. 4 samples of primary cells from tonsil with cell surface markes CD20med/CD38high in young individuals (3 to 10 years old) are included in this experiment. This ArrayExpress record contains only meta-data. Raw data files have been archived at the European Genome-Phenome Archive (EGA, www.ebi.ac.uk/ega) by the consortium, with restricted access to protect sample donors' identity. The relevant accessions of EGA data sets is EGAD00001001523. Details on how to apply for data access via the BLUEPRINT data access committee are on the EGA data set pages. The mapping of samples to these EGA accessions can be found in the 'Sample Data Relationship Format' file of this ArrayExpress record. Information on individual samples and sequencing libraries can also be found on the BLUEPRINT data coordination centre (DCC) website: http://dcc.blueprint-epigenome.eu
Project description:Disease-specific plasma cells (PCs) reactive with transglutaminase 2 (TG2) or deamidated gluten peptides (DGPs) are abundant in celiac disease (CeD) gut lesions. Their contribution toward CeD pathogenesis is unclear. We assessed expression of markers associated with PC longevity in 15 untreated and 26 treated CeD patients in addition to 13 non-CeD controls and performed RNA sequencing with clonal inference and transcriptomic analysis of 3,251 single PCs. We observed antigen-dependent V-gene selection and stereotypic antibodies. Generation of recombinant DGP-specific antibodies revealed a key role of a heavy chain residue that displays polymorphism, suggesting that immunoglobulin gene polymorphisms may influence CeD-specific antibody responses. We identified transcriptional differences between CeD-specific and non-disease-specific PCs and between short-lived and long-lived PCs. The short-lived CD19+CD45+ phenotype dominated in untreated and short-term-treated CeD, in particular among disease-specific PCs but also in the general PC population. Thus, the disease lesion of untreated CeD is characterized by massive accumulation of short-lived PCs that are not only directed against disease-specific antigens.
Project description:Disease-specific plasma cells (PCs) reactive with transglutaminase 2 (TG2) or deamidated gluten peptides (DGP) are abundant in celiac disease (CeD) gut lesions. Their contribution toward CeD pathogenesis is unclear. We assessed expression of markers associated with PC longevity in 15 untreated and 26 treated CeD patients in addition to 13 non-CeD controls, and performed RNA-sequencing with clonal inference and transcriptomic analysis of 3251 single PCs. We observed antigen-dependent V-gene selection and stereotypic antibodies. Generation of recombinant DGP-specific antibodies revealed a key role of a heavy-chain residue that displays polymorphism, suggesting that immunoglobulin gene polymorphisms may influence CeD-specific antibody responses. We identified transcriptional differences between CeD-specific vs non-disease-specific PCs and between short-lived vs long-lived PCs. The short-lived CD19+CD45+ phenotype dominated in untreated and short-term-treated CeD, in particular among disease-specific PCs but also in the general PC population. Thus, the disease lesion of untreated CeD is characterized by massive accumulation of short-lived PCs that are not only directed against disease-specific antigens.
Project description:Celiac disease is a human T cell-mediated autoimmune-like disorder caused by exposure to dietary gluten in genetically predisposed individuals. This review will discuss how CD4 T cell responses directed against an exogenous Ag can cause an autoreactive B cell response and participate in the licensing of intraepithelial lymphocytes to kill intestinal epithelial cells. Furthermore, this review will examine the mechanisms by which intraepithelial cytotoxic T cells mediate tissue destruction in celiac disease.
Project description:With the advent of high-throughput sequencing of immunoglobulin genes (Ig-Seq), the understanding of antibody repertoires and their dynamics among individuals and populations has become an exciting area of research. There is an increasing number of computational tools that aid in every step of the immune repertoire characterization. However, since not all tools function identically, every pipeline has its unique rationale and capabilities, creating a rich blend of useful features that may appear intimidating for newcomer laboratories with the desire to plunge into immune repertoire analysis to expand and improve their research; hence, all pipeline strengths and differences may not seem evident. In this review we provide a practical and organized list of the current set of computational tools, focusing on their most attractive features and differences in order to carry out the characterization of antibody repertoires so that the reader better decides a strategic approach for the experimental design, and computational pathways for the analyses of immune repertoires.
Project description:Background & aimsDevelopment of celiac disease is believed to involve the transglutaminase-dependent response of CD4+ T cells toward deamidated gluten peptides in the intestinal mucosa of individuals with specific HLA-DQ haplotypes. We investigated the antigen presentation process during this mucosal immune response.MethodsWe generated monoclonal antibodies (mAbs) specific for the peptide-MHC (pMHC) complex of HLA-DQ2.5 and the immunodominant gluten epitope DQ2.5-glia-α1a using phage display. We used these mAbs to assess gluten peptide presentation and phenotypes of presenting cells by flow cytometry and enzyme-linked immune absorbent spot (ELISPOT) in freshly prepared single-cell suspensions from intestinal biopsies from 40 patients with celiac disease (35 untreated and 5 on a gluten-free diet) as well as 18 subjects with confirmed noninflamed gut mucosa (controls, 12 presumed healthy, 5 undergoing pancreatoduodenectomy, and 1 with potential celiac disease).ResultsUsing the mAbs, we detected MHC complexes on cells from intestinal biopsies from patients with celiac disease who consume gluten, but not from patients on gluten-free diets. We found B cells and plasma cells to be the most abundant cells that present DQ2.5-glia-α1a in the inflamed mucosa. We identified a subset of plasma cells that expresses B-cell receptors (BCR) specific for gluten peptides or the autoantigen transglutaminase 2 (TG2). Expression of MHC class II (MHCII) was not restricted to these specific plasma cells in patients with celiac disease but was observed in an average 30% of gut plasma cells from patients and controls.ConclusionsA population of plasma cells from intestinal biopsies of patients with celiac disease express MHCII; this is the most abundant cell type presenting the immunodominant gluten peptide DQ2.5-glia-α1a in the tissues from these patients. These results indicate that plasma cells in the gut can function as antigen-presenting cells and might promote and maintain intestinal inflammation in patients with celiac disease or other inflammatory disorders.
Project description:microRNAs were profiled in healthy controls, classic celiac patients (CD), CD patients with anemia and GFD treated CD with normalization of duodenal mucosa
Project description:In this study, we investigated somatic mutations in T cells in patients with various hematological disorders. To analyze immune cell phenotypes with somatic mutations, we performed scRNA+TCRab sequencing from 9 patients with chronic GVHD and clonal expansions of CD4+ or CD8+ T cells based on T cell receptor sequencing. CD45+ PBMCs (lymphocytes and monocytes) were sorted with BD Influx cell sorter and subjected to sequencing with Chromium VDJ and Gene Expression platform (v1.1, 10X Genomics). Sequencing was performed with Novaseq 6000 (Illumina). The immune cell phenotypes were compared to healthy controls processed in the same laboratory (accession number E-MTAB-11170). Due to data privacy concerns, the raw sequencing data is in the European Genome-Phenome Archive (EGA) under accession code [xxxx] and can be requested through the EGA Data Access Committee.
Project description:AimTo investigate the effect of vitamin supplements on homocysteine levels in patients with celiac disease.MethodsVitamin B6, folate, vitamin B12, and fasting plasma homocysteine levels were measured in 51 consecutive adults with celiac disease [median (range) age 56 (18-63) years; 40% men, 26 (51%) had villous atrophy, and 25 (49%) used B-vitamin supplements] and 50 healthy control individuals matched for age and sex. Finally, the C677T polymorphism of 5,10-methylenetetrahydrofolate reductase (MTHFR) was evaluated in 46 patients with celiac disease and all control individuals.ResultsPatients with celiac disease and using vitamin supplements had higher serum vitamin B6 (P = 0.003), folate (P < 0.001), and vitamin B12 (P = 0.012) levels than patients who did not or healthy controls (P = 0.035, P < 0.001, P = 0.007, for vitamin B6, folate, and vitamin B12, respectively). Lower plasma homocysteine levels were found in patients using vitamin supplements than in patients who did not (P = 0.001) or healthy controls (P = 0.003). However, vitamin B6 and folate, not vitamin B12, were significantly and independently associated with homocysteine levels. Twenty-four (48%) of 50 controls and 23 (50%) of 46 patients with celiac disease carried the MTHFR thermolabile variant T-allele (P = 0.89).ConclusionHomocysteine levels are dependent on Marsh classification and the regular use of B-vitamin supplements is effective in reduction of homocysteine levels in patients with celiac disease and should be considered in disease management.