Genetic analysis of HLA and immune escape genes in Diffuse Large B-cell Lymphoma
Ontology highlight
ABSTRACT: Fifty percent of diffuse large B-cell lymphoma (DLBCL) cases lack cell-surface expression of the class-I major histocompatibility complex (MHC-I), thereby escaping immune recognition by cytotoxic T cells. In order to comprehensively identify the mechanisms involved in MHC-I loss, we first performed immunophenotypic analysis of both MHC class-I and -II in 657 cases across the spectrum of B-NHL, revealing that loss of MHC-I, but not MHC-II, is preferentially restricted to DLBCL. We then used whole exome and targeted deep-sequencing to examine genes involved in MHC-I expression in 74 DLBCL samples representative of MHC-I positive and negative cases. We show here that somatic biallelic or monoallelic inactivation of B2M and/or HLA-I is present in 80.9% (34/42) of MHC-I negative tumors. Furthermore, 68.8% (22/32) of MHC-I positive DLBCLs also harbored monoallelic HLA-I genetic alterations (MHC-I positivemono) that lead to allelic imbalance, suggesting allele-specific inactivation. Both MHC-I negative and MHC-I positivemono cases showed a significantly higher mutational burden as well as a higher number of inferred neo-antigens, suggesting co-selection of HLA-I loss and sustained neo-antigen production. Interestingly, the analysis of > 500.000 individuals in two databases revealed homozygosity of germline HLA-I genes in 26-38% of DLBCL patients, a frequency significantly higher than that observed in any other cancer type. In mice, germinal-center B cells lacking HLA-I expression did not progress to lymphoma and were counterselected in the context of oncogene-driven lymphomagenesis, suggesting that additional events are needed to license immune evasion. These results suggest a multi-step process of HLA-I loss including both germ-line and somatic events in DLBCL development, and have direct implications for the pathogenesis and immunotherapeutic targeting of this disease.
PROVIDER: EGAS00001005054 | EGA |
REPOSITORIES: EGA
ACCESS DATA