Project description:Medulloblastomas comprise a heterogeneous group of tumours and can be subdivided into four molecular subgroups (WNT, SHH, Group 3 and Group 4) with distinct prognosis, biological behaviour and implications for targeted therapies. Few experimental models exist of the aggressive and poorly characterized Group 3 tumours. In order to establish a reproducible transplantable Group 3 medulloblastoma model for preclinical therapeutic studies, we acquired a patient-derived tumour sphere culture and inoculated low-passage spheres into the cerebellums of NOD-scid mice. Mice developed symptoms of brain tumours with a latency of 17-18 weeks. Neurosphere cultures were re-established and serially transplanted for 3 generations, with a negative correlation between tumour latency and numbers of injected cells. Xenografts replicated the phenotype of the primary tumour, including high degree of clustering in DNA methylation analysis, high proliferation, expression of tumour markers, MYC amplification and elevated MYC expression, and sensitivity to the MYC inhibitor JQ1. Xenografts maintained maintained expression of tumour-derived VEGFA and stromal-derived COX-2. VEGFA, COX-2 and c-Myc are highly expressed in Group 3 compared to other medulloblastoma subgroups, suggesting that these molecules are relevant therapeutic targets in Group 3 medulloblastoma.
Project description:ObjectiveMurine models have proved instrumental in studying various aspects of abdominal aortic aneurysm (AAA), from identification of underlying pathophysiologic changes to the development of novel therapeutic strategies. In the current study, we describe a new model in which an elastase-treated donor aorta is transplanted to a recipient mouse and allowed to progress to aneurysm. We hypothesized that by transplanting an elastase-treated abdominal aorta of one genotype to a recipient mouse of a different genotype, one can differentiate pathophysiologic factors that are intrinsic to the aortic wall from those stemming from circulation and other organs.MethodsElastase-treated aorta was transplanted to the infrarenal abdominal aorta of recipient mice by end-to-side microsurgical anastomosis. Heat-inactivated elastase-treated aorta was used as a control. Syngeneic transplants were performed with use of 12-week-old C57BL/6 littermates. Transplant grafts were harvested from recipient mice on day 7 or day 14 after surgery. The aneurysm outcome was measured by aortic expansion, elastin degradation, proinflammatory cytokine expression, and inflammatory cell infiltration and compared with that produced with the established, conventional elastase infusion model.ResultsThe surgical technique success rate was 75.6%, and the 14-day survival rate was 51.1%. By day 14 after surgery, all of the elastase-treated transplanted abdominal aortas had dilated and progressed to AAAs, defined as 100% or more increase in the maximal external diameter compared with that measured before elastase perfusion, whereas none of the transplanted aortas pretreated with inactive elastase became aneurysmal (percentage increase in maximum aortic diameter: 159.36% ± 23.27%, transplanted elastase, vs 41.46% ± 9.34%, transplanted inactive elastase). Aneurysm parameters, including elastin degradation and infiltration of macrophages and T lymphocytes, were found to be identical to those observed in the conventional elastase model. Quantitative polymerase chain reaction analysis revealed similarly increased levels of proinflammatory cytokines (relative changes of mRNA in the conventional elastase model vs transplant model: tumor necrosis factor α, 1.71 ± 0.27 vs 2.93 ± 0.86; monocyte chemoattractant protein 1, 2.36 ± 0.58 vs 2.87 ± 0.51; chemokine (C-C motif) ligand 5, 3.37 ± 0.92 vs 3.46 ± 0.83; and interferon γ, 3.09 ± 0.83 vs 5.30 ± 1.69). Using green fluorescent protein transgenic mice as donors or recipients, we demonstrated that a small quantity of mononuclear leukocytes in the transplant grafts bared the genotype of the donors.ConclusionsTransplanted elastase-treated abdominal aorta could develop to aneurysm in recipient mice. This AAA transplant model can be used to examine how the microenvironment of a transplanted aneurysmal aorta may be altered by the contributions of the "global" environment of the recipient.
Project description:PURPOSE:Cyclophosphamide is widely used to treat children with medulloblastoma; however, little is known about its brain penetration. We performed cerebral microdialysis to characterize the brain penetration of cyclophosphamide (130 mg/kg, IP) and its metabolites [4-hydroxy-cyclophosphamide (4OH-CTX) and carboxyethylphosphoramide mustard (CEPM)] in non-tumor bearing mice and mice bearing orthotopic Group 3 medulloblastoma. METHODS:A plasma pharmacokinetic study was performed in non-tumor-bearing CD1- nude mice, and four cerebral microdialysis studies were performed in non-tumor-bearing (M1 and M3) and tumor- bearing mice (M2 and M4). Plasma samples were collected up to 6-hours post-dose, and extracellular fluid (ECF) samples were collected over 60-minute intervals for 24-hours post-dose. To stabilize and quantify 4OH-CTX, a derivatizing solution was added in blood after collection, and either directly in the microdialysis perfusate (M1 and M2) or in ECF collection tubes (M3 and M4). Plasma/ECF cyclophosphamide and CEPM, and 4OH-CTX concentrations were separately measured using different LC-MS/MS methods. RESULTS:All plasma/ECF concentrations were described using a population-based pharmacokinetic model. Plasma exposures of cyclophosphamide, 4OH-CTX, and CEPM were similar across studies (mean AUC=112.6, 45.6, and 80.8 µmol?hr/L). Hemorrhage was observed in brain tissue when the derivatizing solution was in perfusate compared with none when in collection tubes, which suggested potential sample contamination in studies M1 and M2. Model-derived unbound ECF to plasma partition coefficients (Kp,uu) were calculated to reflect CNS penetration of the compounds. Lower cyclophosphamide Kp,uu was obtained in tumor-bearing mice versus non-tumor bearing mice (mean 0.15 versus 0.22, p=0.019). No differences in Kp,uu were observed between these groups for 4OH- CTX and CEPM (overall mean 0.10 and 0.07). CONCLUSIONS:Future studies will explore potential mechanisms at the brain-tumor barrier to explain lower cyclophosphamide brain penetration in tumor-bearing mice. These results will be used to further investigate exposure-response relationships in medulloblastoma xenograft models.
Project description:Mouse models of human cancers are widely used in cancer research, yet questions frequently arise regarding their faithfulness in recapitulating their human counterparts. To compare the somatic mutations of murine models with human medulloblastoma (MB), we performed whole-exome sequencing on 12 tumors representing three distinct medulloblastoma subgroups: Wnt, Sonic Hedgehog (Shh) and Group 3 (G3). In total, 64 somatic mutations were identified and validated, including 40 predicted to cause amino acid changes. After filtering and cross-species analysis with 366 human MBs from four independent studies, human orthologs for 16 of the 40 mouse genes were found to harbor non-silent mutations in human MB. Loss-of-function Kmt2d mutations detected in one mouse tumor was previously reported in 30 of 366 human MBs. In mice bearing G3 MB, one mouse succumbed to tumor burden at least 15 days earlier than other mice, raising the possibility that somatic mutations may have accelerated the tumorigenesis process. In this mouse tumor, four novel candidate genes harbored non-silent somatic mutations, Lrfn2, Smyd1, Ubn2 and Wdr11. Extended survival was found in mice harboring mouse G3 overexpressing WDR11 but not the other three genes. Genes in the KEGG WNT signaling pathway, including Ccnd1/2/3, Myc and Tcf7l1, were down-regulated in the transcriptome of G3 MB tumorspheres overexpressing WDR11, consistent with reduced tumor progression. In conclusion, we demonstrated that common spontaneous mutations were shared between human and murine models of MB suggesting similar molecular mechanisms of tumorigenesis, and identified WDR11 as a protein with tumor suppressive activity in G3 MB.
Project description:BackgroundCancer metabolism influences multiple aspects of tumorigenesis and causes diversity across malignancies. Although comprehensive research has extended our knowledge of molecular subgroups in medulloblastoma (MB), discrete analysis of metabolic heterogeneity is currently lacking. This study seeks to improve our understanding of metabolic phenotypes in MB and their impact on patients' outcomes.MethodsData from four independent MB cohorts encompassing 1,288 patients were analysed. We explored metabolic characteristics of 902 patients (ICGC and MAGIC cohorts) on bulk RNA level. Moreover, data from 491 patients (ICGC cohort) were searched for DNA alterations in genes regulating cell metabolism. To determine the role of intratumoral metabolic differences, we examined single-cell RNA-sequencing (scRNA-seq) data from 34 additional patients. Findings on metabolic heterogeneity were correlated to clinical data.ResultsEstablished MB groups exhibit substantial differences in metabolic gene expression. By employing unsupervised analyses, we identified three clusters of group 3 and 4 samples with distinct metabolic features in ICGC and MAGIC cohorts. Analysis of scRNA-seq data confirmed our results of intertumoral heterogeneity underlying the according differences in metabolic gene expression. On DNA level, we discovered clear associations between altered regulatory genes involved in MB development and lipid metabolism. Additionally, we determined the prognostic value of metabolic gene expression in MB and showed that expression of genes involved in metabolism of inositol phosphates and nucleotides correlates with patient survival.ConclusionOur research underlines the biological and clinical relevance of metabolic alterations in MB. Thus, distinct metabolic signatures presented here might be the first step towards future metabolism-targeted therapeutic options.
Project description:These data were generated in May of 2016 on a Thermo Q-Exactive at the University of Cape Town in South Africa. Samples were drawn from 48 cases of malignant medulloblastoma that were added to the FFPE archive between 1988 and 2014 under approval from the University of Cape Town Faculty of Health Sciences Human Research Ethics Committee (HREC 149/2014). Assignment to Group 3 or Group 4 categories was performed via Nanostring analysis and IHC (other subtypes were also analyzed in the larger study). Five distinct samples from each of the two Groups were subjected to LC-MS/MS. After conversion to mzML, a total of 245,589 tandem mass spectra were available, of which 36% corresponded to doubly-charged precursor ions. Over all ten experiments, tandem mass spectra were acquired at a rate of 4.55 Hz. MS/MS scans averaged a peak density average of 148 peaks per spectrum.
More complete information is available in Omesan Nair's Ph.D. Dissertation: http://hdl.handle.net/11427/26896.
Project description:BackgroundNovel targeted therapies for children diagnosed with medulloblastoma (MB), the most common malignant pediatric brain tumor, are urgently required. A major hurdle in the development of effective therapies is the impaired delivery of systemic therapies to tumor cells due to a specialized endothelial blood-brain barrier (BBB). Accordingly, the integrity of the BBB is an essential consideration in any preclinical model used for assessing novel therapeutics. This study sought to assess the functional integrity of the BBB in several preclinical mouse models of MB.MethodsDynamic contrast enhancement magnetic resonance imaging (MRI) was used to evaluate blood-brain-tumor barrier (BBTB) permeability in a murine genetically engineered mouse model (GEMM) of Sonic Hedgehog (SHH) MB, patient-derived orthotopic xenograft models of MB (SHH and Gp3), and orthotopic transplantation of GEMM tumor cells, enabling a comparison of the direct effects of transplantation on the integrity of the BBTB. Immunofluorescence analysis was performed to compare the structural and subcellular features of tumor-associated vasculature in all models.ResultsContrast enhancement was observed in all transplantation models of MB. No contrast enhancement was observed in the GEMM despite significant tumor burden. Cellular analysis of BBTB integrity revealed aberrancies in all transplantation models, correlating to the varying levels of BBTB permeability observed by MRI in these models.ConclusionsThese results highlight functional differences in the integrity of the BBTB and tumor vessel phenotype between commonly utilized preclinical models of MB, with important implications for the preclinical evaluation of novel therapeutic agents for MB.
Project description:Radiation-induced glioma (RIG) is a highly aggressive brain cancer arising as a consequence of radiation therapy. We report a case of RIG that arose in the brain stem following treatment for paediatric medulloblastoma, and the development and characterisation of a matched orthotopic patient-derived xenograft (PDX) model (TK-RIG915). Patient and PDX tumours were analysed using DNA methylation profiling, whole genome sequencing (WGS) and RNA sequencing. While initially thought to be a diffuse intrinsic pontine glioma (DIPG) based on disease location, results from methylation profiling and WGS were not consistent with this diagnosis. Furthermore, clustering analyses based on RNA expression suggested the tumours were distinct from primary DIPG. Additional gene expression analysis demonstrated concordance with a published RIG expression profile. Multiple genetic alterations that enhance PI3K/AKT and Ras/Raf/MEK/ERK signalling were discovered in TK-RIG915 including an activating mutation in PIK3CA, upregulation of PDGFRA and AKT2, inactivating mutations in NF1, and a gain-of-function mutation in PTPN11. Additionally, deletion of CDKN2A/B, increased IDH1 expression, and decreased ARID1A expression were observed. Detection of phosphorylated S6, 4EBP1 and ERK via immunohistochemistry confirmed PI3K pathway and ERK activation. Here, we report one of the first PDX models for RIG, which recapitulates the patient disease and is molecularly distinct from primary brain stem glioma. Genetic interrogation of this model has enabled the identification of potential therapeutic vulnerabilities in this currently incurable disease.