Project description:We established human colorectal tumor organoids from benign adenoma, primary colorectal cancer or metastasized colorectal cancer. The gene signature of tumor organoids associated with their tumor progression status. We also generated genome-edited organoids from human intestinal organoids recapitulating adenoma-carcinoma sequence. Gene expression signature of the genome engineered organoids were similar to that of adenoma organoids. This result indicated multiple (up to five) genetic mutations were insufficient for gene expression reprogramming of colorectal cancer. We used microarrays to detail the global program of gene expression in human colorectal tumor organoids and artificially mutation introduced organoids. To assess the expression profiling of genome-engineered organoids, we prepared total-RNA from cultured adenoma, carcinoma and genome-engineered organoids. We produced two types of genome-engineered organoids using the CRISPR/Cas9 or lentivirus vector system. Each engineered gene and engineered methods are described as a single alphabet and method name, respectively, in the sample characteristics field. The abbreviations for the engineered genes are as follows. 1) Genome-engineered organoids with CRISPR/Cas9 A = APC deletion; K = KRAS G12V knock in; S = Smad4 deletion; T = TP53 deletion; P = PIK3CA E545K knock in. 2) Genome-engineered organoids with Lent virus vector B = CTNNB1 S33Y overexpression; K = KRAS G12V overexpression; S = Smad4 shRNA overexpression; T = TP53 shRNA overexpression; P = PIK3CA E545K overexpression.
Project description:We established human colorectal tumor organoids from benign adenoma, primary colorectal cancer or metastasized colorectal cancer. The gene signature of tumor organoids associated with their tumor progression status. We also generated genome-edited organoids from human intestinal organoids recapitulating adenoma-carcinoma sequence. Gene expression signature of the genome engineered organoids were similar to that of adenoma organoids. This result indicated multiple (up to five) genetic mutations were insufficient for gene expression reprogramming of colorectal cancer. We used microarrays to detail the global program of gene expression in human colorectal tumor organoids and artificially mutation introduced organoids.
Project description:In Rspondin-based 3D cultures, Lgr5 stem cells from multiple organs form ever-expanding epithelial organoids that retain their tissue identity. We report the establishment of tumor organoid cultures from 20 consecutive colorectal (CRC) patients. For most, organoids were also generated from adjacent normal tissue. The organoids closely resemble the original tumor. The spectrum of genetic changes observed within the 'living biobank' agrees well with previous large-scale mutational analyses of CRC. Gene expression analysis indicates that the major CRC molecular subtypes are represented. Tumor organoids are amenable to robotized, high-throughput drug screens allowing detection of gene-drug associations. As an example, a single organoid culture was exquisitely sensitive to Wnt secretion (porcupine) inhibitors and carried a mutation in the negative Wnt feedback regulator RNF43 (rather than in APC). Organoid technology may fill the gap between cancer genetics and patient trials, complement cell line- and xenograft-based drug studies and allow personalized therapy design. We generated organoids from healthy tissue and coloncarcinoma tissue. The organoids were trypsinized, plated in matrigel and overlaid with medium. After three days, RNA was isolated using Qiagen RNAeasy. Medium conditions are the same for all organoids, irrespective of their origin.
Project description:In this study we want present a bank of metastatic colorectal cancer (mCRC) Patient Derived Organoids (PDOs) obtained from Patient Derived Xenografts (PDXs). These models are annotated with different omics to advance our understanding of CRC. We wanted to create a resource for the scientific community to assess the predictive reliability of these preclinical models. We performed comparative analyses between PDOs and matched PDXs to assess the similarities of these two platforms regarding molecular profiles and transcriptional classification. Moreover, we analyzed how these models respond to Cetuximab, a chimeric monoclonal antibody, normally given to patients after chemotherapy, that inhibits EGFR. After having assessed models’ reliability with Cetuximab, we aimed at identifying potential synergistic drugs to individuate new possible therapeutic prospects.
Project description:In Rspondin-based three-dimensional cultures, Lgr5 stem cells from multiple organs form ever-expanding epithelial organoids that retain their tissue identity. Here we report the establishment of tumor organoid cultures from 20 consecutive colorectal carcinoma (CRC) patients. For most, organoids were also generated from adjacent normal tissue. Organoids closely resemble the original tumor. The spectrum of genetic changes within the 'living biobank' agrees well with previous large-scale mutational analyses of CRC. Gene expression analysis indicates that the major CRC molecular subtypes are represented. Tumor organoids are amenable to high-throughput drug screens allowing detection of gene-drug associations. As an example, a single organoid culture was exquisitely sensitive to Wnt secretion (porcupine) inhibitors and carried a mutation in the negative Wnt feedback regulator RNF43, rather than in APC. Organoid technology may fill the gap between cancer genetics and patient trials, complement cell line- and xenograft-based drug studies and allow personalized therapy design. Self-renewal of the intestinal epithelium is driven by Lgr5 stem cells located in crypts. We have recently developed a long-term culture system that maintains basic crypt physiology. Wnt signals are required for the maintenance of active crypt stem cells. Indeed, the Wnt agonist R-spondin1 induces dramatic crypt hyperplasia in vivo. R-spondin-1 is the ligand for Lgr5. Epidermal growth factor (EGF) signaling is associated with intestinal proliferation, while transgenic expression of Noggin induces a dramatic increase in crypt numbers. The combination of R-spondin-1, EGF, and Noggin in Matrigel sustains ever-expanding small intestinal organoids, which display all hallmarks of the original tissue in terms of architecture, cell type composition, and self-renewal dynamics. We adapted the culture condition for long-term expansion of human colonic epithelium and primary colonic adenocarcinoma, by adding nicotinamide, A83-01 (Alk inhibitor), Prostaglandin E2 and the p38 inhibitor SB202190. Of note, a two-dimensional culture method for cells from normal and malignant primary tissue has been described by Schlegel and colleagues. Here, we explore organoid technology to routinely establish and phenotypically annotate ‘paired organoids’ derived from adjacent tumor and healthy epithelium from CRC patients.
Project description:Here we compare RNA expression profiles of colorectal cancer organoids grown in four different conditions, namely standard organoids medium, minimal medium without growth factors or with normal or cancer associated fibroblasts. We found majorly different expression profiles between conditions and more heterogeneous tumor cell population in organoids grown with fibroblasts.
Project description:We established an in vivo model of organ-specific colorectal cancer metastasis and demonstrated that the CD110+ tumor initiating cells contribute for colorectal liver metastasis. To gain a deeper understanding of its metastatic capacity, we performed a genome-wide transcriptome analysis on the CD110+ tumor cells derived from primary colon xenografts and their matched liver metastases. Results provide important information of the responses of the CD110+ cells during the process of liver colonization. Total RNA obtained from the CD110+ cells sorted from primary colorectal tumors (CRC102-PT and CRC108-PT) compared to those from the corresponding liver metastases (CRC102-LM and CRC108-LM).