Project description:Glioblastoma multiforme (GBM), a highly malignant and heterogeneous brain tumor, contains various types of tumor and non-tumor cells. Whether GBM cells can trans-differentiate into non-neural cell types, including mural cells or endothelial cells, to support tumor growth and invasion remains controversial. Here we generated two genetic GBM models de novo in immunocompetent mouse brains, mimicking essential pathological and molecular features of human GBMs. Single-cell RNA sequencing showed that patterns of copy-number variations (CNVs) of mural cells and endothelial cells were distinct from those of GBM cells, indicating discrete origins of GBM cells and vascular components. Furthermore, lineage tracing and transplantation studies demonstrated that, although blood vessels in GBM brains underwent drastic remodeling, GBM cells did not give rise to non-neural cell types in the brain. Intriguingly, GBM cells could randomly express mesenchymal markers, including those for mural cells, during gliomagenesis. Most importantly, single-cell CNV analysis of human GBM specimens also strongly suggested that GBM cells and vascular cells are separate lineages. Instead, non-neural cell types expanded by proliferation during tumorigenesis. Therefore, cross-lineage trans-differentiation of GBM cells is very unlikely to occur during gliomagenesis. Our findings advance understanding of cell lineage dynamics during gliomagenesis, and have implications for targeted treatment of GBMs.
Project description:The outbreak-causing monkeypox virus of 2022 (2022 MPXV) is classified as a clade IIb strain and phylogenetically distinct from prior endemic MPXV strains (clades I or IIa), suggesting that its virological properties may also differ. Here, we used human keratinocytes and induced pluripotent stem cell-derived colon organoids to examine the efficiency of viral growth in these cells and the MPXV infection-mediated host responses. MPXV replication was much more productive in keratinocytes than in colon organoids. We observed that MPXV infections, regardless of strain, caused cellular dysfunction and mitochondrial damage in keratinocytes. Notably, a significant increase in the expression of hypoxia-related genes was observed specifically in 2022 MPXV-infected keratinocytes. Our comparison of virological features between 2022 MPXV and prior endemic MPXV strains revealed signaling pathways potentially involved with the cellular damages caused by MPXV infections and highlights host vulnerabilities that could be utilized as protective therapeutic strategies against human mpox in the future.
Project description:The World Health Organization Classification of Hematolymphoid Tumors (WHO) and the International Consensus Classification (ICC) of 2022 introduced major changes to the definition of CMML. To assess qualitative and quantitative implications for patient care, we started with 3,311 established CMML cases (according to WHO 2017 criteria) and included also 2,130 oligomonocytosis cases fulfilling the new CMML diagnostic criteria. Applying both classification systems from 2022, 356 and 241 of oligomonocytosis cases were newly classified as myelodysplastic (MD)-CMML (WHO and ICC 2022, respectively), most of which were diagnosed as MDS according to WHO 2017. Importantly, 1.5 times more oligomonocytosis cases were classified as CMML according to WHO 2022 than based on ICC, due to different diagnostic criteria. Genetic analyses of the newly classified CMML cases showed a distinct mutational profile with strong enrichment of MDS-typical alterations, resulting in a transcriptional subgroup separated from established MD- and myeloproliferative (MP)-CMML. Despite a different cytogenetic, molecular, immunophenotypic, and transcriptional landscape, no differences in overall survival were found between newly classified and established MD-CMML cases. To the best of our knowledge, this study represents the most comprehensive analysis of routine CMML cases to date, both in terms of clinical characterization and transcriptomic analysis, placing newly classified CMML cases on a disease continuum between MDS and previously established CMML.
Project description:Single-nucleus RNA sequencing (sNuc-seq) profiles RNA from tissues that are preserved or cannot be dissociated, but it does not provide high throughput. Here, we develop DroNc-seq: massively parallel sNuc-seq with droplet technology. We profile 39,111 nuclei from mouse and human archived brain samples to demonstrate sensitive, efficient, and unbiased classification of cell types, paving the way for systematic charting of cell atlases.
Project description:This SuperSeries is composed of the following subset Series: GSE24446: Genetic abnormalities in GBM brain tumors GSE24452: Genetic abnormalities in various cell subpopulations of GBM brain tumors GSE24557: Exon-level expression profiles of GBM brain tumors Refer to individual Series