RNA sequencing in primary inflammatory (TPP) macrophages following deletion of a disease-associated gene desert at chr21q22, disruption of ETS2, or treatment of ETS2-edited macrophages with a HIF1α stabiliser.
Ontology highlight
ABSTRACT: GWAS studies in five different inflammatory diseases have identified a strong genetic association at a gene desert at the chr21q22 locus. We have shown that this locus contains a monocyte/macrophage-specific enhancer that regulates ETS2 - a gene whose role in primary human monocytes/macrophages is incompletely understood. We therefore used a CRISPR-Cas9-based approach to delete the enhancer region or to disrupt ETS2, and performed RNA-sequencing to examine the transcriptional consequences. One effect of ETS2 disruption was upregulation of genes involved in aerobic respiration and oxidative phosphorylation. We therefore treated ETS2-edited inflammatory macrophages with roxadustat, a HIF1α stabiliser that can promote glycolysis via HIF1α-mediated metabolic reprogramming, and performed RNA-sequencing to determine whether this drug might rescue the transcriptional effects of ETS2 disruption.
PROVIDER: EGAS00001007553 | EGA |
REPOSITORIES: EGA
ACCESS DATA