Project description:Proteomic genotyping is the use of genetically variant peptides (GVPs), detected in a forensic protein sample, to infer the genotype of corresponding non-synonymous SNP alleles in the donor’s genome. This process does not depend on the presence of accessible or useable DNA in a sample. This makes proteomic genotyping an attractive alternative for analysis of problematic forensic samples, such as hair shafts, degraded bones or teeth, fingermarks, or sexual assault evidence. To demonstrate the concept in hair shafts, we developed an optimized sample processing protocol that could be used with high effectiveness on single hairs. This allows us to determine if the detected profiles of genetically variant peptides are robust and result in a consistent profile of inferred SNP alleles regardless of the chemical or biological history of the sample. Several real world scenarios have been evaluated. Here we include a study of four European subjects that had both pigmented and non-pigmented (or gray and non-gray) hair shafts. We tested whether (a) protein profiles change as a result of the loss of pigmentation and (b) these changes were reflected in the inferred genotype derived from detection of genetically variant peptides. Using this information, we can determine whether the resulting GVP profiles are more dependent on the biological context of pigmentation status or the underlying genotype.
Project description:Rice is the most salt sensitive cereal crop and its cultivation is particularly threatened by salt stress. This study reports the development of salt tolerant introgressed lines (ILs) derived from crosses between the salt tolerant indica rice variety FL478, which harbors the Saltol QTL, and the salt-sensitive japonica elite cultivar PL12. Although the introgression of the Saltol QTL has been widely used to improve salinity tolerance, the molecular basis underlying the salinity tolerance conferred by Saltol remains poorly understood. Equally, the impact of introgressions from a Saltol donor parent on the global transcriptome of ILs is largely unknown. Here, genotyping-by-sequencing (GBS) and Kompetitive allele specific PCR (KASP) genotyping, in combination with step-wise phenotypic selection in hydroponic culture, were used for the identification of salt-tolerant ILs. Transcriptome-based genotyping allowed the fine mapping of indica genetic introgressions in the best performing IL line (IL22). A total of 1,595 genes were identified in indica regions in IL22, which mainly located in large introgressions at Chromosomes 1 and 3. In addition to OsHKT1;5, an important number of genes potentially contributing to salt stress tolerance were identified in indica segments of IL22. Comparative transcript profiling also revealed important transcriptional reprograming in IL22 plants both under non-stress and salt-stress conditions, indicating an impact on the transcriptome of the japonica background by the indica introgressed genes and vice versa. Interactions among indica and japonica genes would provide novel regulatory networks contributing to salt stress tolerance in introgression rice lines.