Project description:The replication and life cycle of the influenza virus is governed by an intricate network of intracellular regulatory events during infection, including interactions with an even more complex system of biochemical interactions of the host cell. Computational modeling and systems biology have been successfully employed to further the understanding of various biological systems, however, computational studies of the complexity of intracellular interactions during influenza infection is lacking. In this work, we present the first large-scale dynamical model of the infection and replication cycle of influenza, as well as some of its interactions with the host's signaling machinery. Specifically, we focus on and visualize the dynamics of the internalization and endocytosis of the virus, replication and translation of its genomic components, as well as the assembly of progeny virions. Simulations and analyses of the models dynamics qualitatively reproduced numerous biological phenomena discovered in the laboratory. Finally, comparisons of the dynamics of existing and proposed drugs, our results suggest that a drug targeting PB1:PA would be more efficient than existing Amantadin/Rimantaine or Zanamivir/Oseltamivir.
Project description:We present a novel methodology to construct a Boolean dynamic model from time series metagenomic information and integrate this modeling with genome-scale metabolic network reconstructions to identify metabolic underpinnings for microbial interactions. We apply this in the context of a critical health issue: clindamycin antibiotic treatment and opportunistic Clostridium difficile infection. Our model recapitulates known dynamics of clindamycin antibiotic treatment and C. difficile infection and predicts therapeutic probiotic interventions to suppress C. difficile infection. Genome-scale metabolic network reconstructions reveal metabolic differences between community members and are used to explore the role of metabolism in the observed microbial interactions. In vitro experimental data validate a key result of our computational model, that B. intestinihominis can in fact slow C. difficile growth.
Project description:This model looks at the development of colitis-associated colon cancer in order investigate the mechanism behind inflammation-associated tumorigenesis. Dynamic simulations reveal that P53, MDM2, and AKT may constitute a core network responsible for the malignant transformation of colon epithelial cells in a pro-tumor inflammatory environment. This model can aid in furthering mechanistic studies on colitis-associated colon cancer in addition to identifying novel cancer therapies.
Project description:A limited number of signalling pathways are involved in the specification of cell fate during the development of all animals. Several of these pathways were originally identified in Drosophila. To clarify their roles, and possible cross-talk, we have built a logical model for the nine key signalling pathways recurrently used in metazoan development. In each case, we considered the associated ligands, receptors, signal transducers, modulators, and transcription factors reported in the literature. Implemented using the logical modelling software GINsim, the resulting models qualitatively recapitulate the main characteristics of each pathway, in wild type as well as in various mutant situations (e.g. loss-of-function or gain-of-function). These models constitute pluggable modules that can be used to assemble comprehensive models of complex developmental processes. Moreover, these models of Drosophila pathways could serve as scaffolds for more complicated models of orthologous mammalian pathways. Comprehensive model annotations and GINsim files are provided for each of the nine considered pathways. (Fig3C from the paper)