Project description:NOD mice spontaneously develop lacrimal gland inflammation. NOD mice that lack TLR7 or that lack IFNAR1 are protected from developing lacrimal gland inflammation. RNA sequencing studies were performed to compare gene expression profiles in lacrimal glands from wild-type (WT) vs Tlr7 knockout or Ifnar1 knockout nonobese diabetic (NOD) mice to determine disease-relevant gene and pathway profiles upregulated in WT lacrimal glands in either a TLR7- or IFNAR1-dependent manner.
Project description:To identify the transcriptomic alterations within the different cellular compartments of the lacrimal gland during chronic inflammation, we analyzed the lacrimal glands of NOD.B10.H2b vs BALB/cJ with 10X Visium technology
Project description:The purpose of this study was to determine the pathogenic changes that occur in myoepithelial cells (MECs) from lacrimal glands of a mouse model of Sjogren’s syndrome. MECs were cultured from lacrimal glands of C57BL/6J (wild type, WT), and thrombospondin 1 knockout null (TSP1 -/- ) mice. We used microarray to analyzed the differential expression of genes in cultured MECs of TSP1-/- and wild type (WT) mice.
Project description:Our objective was to determine the nature and extent of androgen regulation of gene expression in the female lacrimal, meibomian,and submandibular glands, and to explore the degree to which this control is the same as in male glands. Keywords: Hormone treatment
Project description:The purpose of the present studies was to use CyTOF and RNA-Seq technologies to identify cells and genes involved in lacrimal gland repair that could be targeted to treat diseases of lacrimal gland dysfunction. Lacrimal glands of female BALB/c mice were experimentally injured by intra-glandular injection of interleukin 1 alpha (IL-1α). The lacrimal glands were harvested at various time points following injury (1 to 14 days) and used to either prepare single cell suspensions for CyTOF immuno-phenotyping analyses or to extract RNA for gene expression studies using RNA-Seq. CyTOF immuno-phenotyping identified monocytes and neutrophils as the major infiltrating populations 1 and 2 days post injury. Clustering of significantly differentially expressed genes identified 13 distinct molecular signatures: 3 associated with immune/inflammatory processes included genes up-regulated at days 1-2 and 3 associated with reparative processes with genes up-regulated primarily between days 4 and 5. Finally, clustering identified 65 genes which were specifically up-regulated 2 days post injury which was enriched for muscle specific genes. The expression of select muscle-related proteins was confirmed by immunohistochemistry which identified a subset of cells expressing these proteins. Double staining experiments showed that these cells are distinct from the myoepithelial cells. We conclude that experimentally induced injury to the lacrimal gland leads to massive infiltration by neutrophils and monocytes which resolved after 3 days. RNAseq and immunohistochemistry identified a group of cells, other than myoepithelial cells, that express muscle-related proteins that could play an important role in lacrimal gland repair.
Project description:The Effect of Aromatase Knockout on Gene Expression in the Mouse Lacrimal and Meibomoan Gland. Keywords: Aromatase Knockout vs Wild Type Control Lacrimal and meibomian glands were harvested from homozygous male and female aromatase knockout mice and age matched wild type controls. Tissues were pooled into 3 biological replicates and were hybridized to separate microarrays. Each cRNA prep was hybridized to a GE Healthcare/Amersham Biosciences CodeLink UniSet Mouse 20K I Bioarray and a Affymetrix GeneChip Mouse Expression Array 430A.
Project description:Tears are essential for the maintenance of the terrestrial animal ocular surface and the lacrimal gland is the source of the aqueous layer of the tear film. Despite the importance of the lacrimal gland in ocular health, molecular aspects of its development remain poorly understood. We have identified a noncoding RNA (miR-205) as an essential gene for lacrimal gland development. Knockout mice lacking miR-205 fail to develop lacrimal glands, establishing this noncoding RNA as a key regulator of lacrimal bud initiation. RNA-seq analysis uncovered several up-regulated miR-205 targets, including Inppl1, a negative regulator of Akt signaling. Data indicate that Akt signaling is required within lacrimal gland epithelia and is activated by Fgf10. Furthermore, combinatorial epistatic deletion of Fgf10 and miR-205 in mice exacerbates the lacrimal gland phenotype. We develop a molecular rheostat model where miR-205 modulates signaling pathways downstream of Fgf10 to regulate glandular development. These data show that a single microRNA is a key regulator for lacrimal gland initiation in mice and highlights the important role of microRNAs during organogenesis.
Project description:NOD mice were injected once a week with LTBR-Ig to block the LTBR-pathway, or with control monoclonal antibody MOPC from age 8 to 16 weeks old. Extraorbital lacrimal glands or submaxillary glands were dissected and total mRNA prepared. Each sample was either the combined lacrimals (2) from each mouse or individual salivary glands. There were 4 mice in each treatment group. Total mRNA was isolated and the quality was assessed using the Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA). Reverse transcription to prepare cDNA was performed using Invitrogen M-MLV system. The purpose was to determine changes in gene expression in glands due to blockade of the LTBR-pathway. Differential Gene Expression in NOD mouse lacrimal and salivary glands after LTBR-Ig treatment
Project description:Series includes pooled (n = 5 mice per biological replicate) samples from submandibular, sublingual, parotid, lacrimal, and meibomian glands of BALB/c mice. Both male and female samples were analyzed on CodeLink Mouse Uniset I Microarrays. Keywords: repeat sample
Project description:Series includes pooled (n = 5 mice per biological replicate) samples from lacrimal, meibomian, and submandibular glands of male palcebo- and testosterone-treated BALB/c mice. All experiments were run in triplicate (pooled biological replicates) on CodeLink Mouse Uniset I Microarrays. Keywords: repeat sample