Global transcriptomic changes of Plasmodium falciparum asexual parasites and late gametocytes after treatment with MMV390048 or MMV642943
Ontology highlight
ABSTRACT: Plasmodium falciparum asexual parasites and late gametocytes were treated for 24 or 48 h with MMV390048 or MMV642943 in order to understand the functional consequences of inhibiting lipid kinases
Project description:For malaria transmission, the parasite must undergo sexual differentiation into mature gametocytes. However, the molecular basis for this critical transition in the parasites life cycle is unknown. Six previously uncharacterized genes, Pfg14.744, Pfg14.745, Pfg14.748, Pfg14.763, Pfg14.752 and Pfg6.6 that are members of a 36 gene Plasmodium falciparum-specific subtelomeric superfamily were found to be expressed in parasites that are committed to sexual development as suggested by co-expression of Pfs16 and Pfg27. Northern blots demonstrated that Pfg14.744 and Pfg14.748 were first expressed before the parasites differentiated into morphologically distinct gametocytes, transcription continued to increase until stage II gametocytes were formed and then rapidly decreased. Immunofluorescence assays indicated that both proteins were only produced in the subpopulation of ring stage parasites that are committed to gametocytogenesis and both localized to the parasitophorous vacuole (PV)b of the early ring stage parasites. As the parasites continued to develop Pfg14.748 remained within the parasitophorous vacuole, while Pfg14.744 was detected in the erythrocyte. The 5' flanking region of either gene alone was sufficient to drive early gametocyte specific expression of green fluorescent protein (GFP). In parasites transfected with a plasmid containing the Pfg14.748 5' flanking region immediately upstream of GFP, fluorescence was observed in a small number of schizonts the cycle before stage I gametocytes were observed. This expression pattern is consistent with commitment to sexual differentiation prior to merozoite release and erythrocyte invasion. Further investigation into the role of these genes in the transition from asexual to sexual differentiation could provide new strategies to block malaria transmission. Microarray analysis was used to compare two clones derived from Plasmodium falciparum strain 3D7 parasites that differ in their ability to undergo gametocytogenesis. Clone G+ produces gametocytes and clone G- produces very few if any gametocytes. RNA was harvested from the cultures when the asexual parasitemia was 0.9-1.48% (day 4) (n=4) after setting up the gametocyte cultures and 5.2-5.58% (day 6) (n=4) prior to the appearance of morphologically distinct gametocytes and used to generate cDNA that was labeled with Cy3 or Cy5 and hybridized to the Plasmodium falciparum 70 mer oligonucleotide microarray developed by DeRisi and co-workers.
Project description:Investigation of whole genome gene expression level in Plasmodium falciparum male and female mature gametocytes, and detection of any transcriptional differences between male and female gametocytes. The Plasmodium falciparum parasite with green fluorescent protein (GFP) expression under the control of alpha tubulin II promoter facilitated the separation of male and female gametocyte. This engineered parasite strain in this study are further described in Miao J, Fan Q, Parker D, Li X, Li J, et al. (2013) Puf Mediates Translation Repression of Transmission-Blocking Vaccine Candidates in Malaria Parasites. PLoS Pathog 9(4): e1003268. doi: 10.1371/journal.ppat.1003268
Project description:In the human host, Plasmodium falciparum parasites propagate asexually in erythrocytes causing the symptoms of malaria. However, in every asexual cycle, a small proportion of the parasites commits to sexual differentiation, which is critical for transmission. During a period of about 10 days, the sexually committed parasites either develop into male or female gametocytes. In this study, gametocytes carrying an endogenously GFP tagged version of the female specifically expressed ABCG2 gene were FACS sorted to separate male (GFP low) and female (GFP high) gametocyte populations at different days of development. RNA was subsequently extracted from these populations as well as from asexual parasites as controls and subjected to directional RNAseq. These data reveal the transcriptional differences between asexual parasite stages and developing gametocytes, but also between male and female gametocytes as well as for each sex during the course of differentiation. In particular, male gametocytes undergo distinct transcriptional transitions when comparing the transcriptome between day 4, 6 and 10 of gametocytogenesis. In contrast, female gametocyte transcriptomes are more static during the course of gametocytogenesis and only show minimal variation. This is the first study to longitudinally monitor gene expression in developing male and female gametocytes
Project description:The sexual stages are vital phases in malaria parasite transmission and are the targets of various interventions such as transmission blocking vaccines. The molecular mechanisms underlying sexual development, however, remain poorly understood. We report mappping of a determinant previously linked to a male gametocyte development defect in the P. falciparum Dd2 parasite to an 82 kb region on chromosome 12. In order to find a critical gene in this region, we compared gene expression pattern in sexual stage of the parasite between Dd2 and its normal gametocyte-producing ancestor W2 clones. The region contains a sexual stage specific gene (pfmdv 1) that is expressed substantially at a lower level in the Dd2 than in W2 parasite. Disruption of pfmdv 1 results in a dramatic reduction in mature gametocytes, especially male gametocytes, with the majority of sexually committed parasites arrested at stage-I. The pfmdv-1 knockout parasites show an enlarged nucleus, often with separation of the inner and outer nuclear membranes and presence of multi-membrane vesicles in red blood cell cytoplasm. Mosquito infectivity of the knockout parasites is also greatly reduced, but not completely lost, suggesting presence of compensatory mechanisms in the sexual development pathways. Data include Day 8 gametocytes of male defective Dd2 and parental W2 clones of Plasmodium falciparum. The series includes three biological repeats. Keywords: repeat sample
Project description:Investigation of overall expression level in Plasmodium falciparum male and female mature gametocytes, and detection of any transcriptional differences between male and female gametocytes. The Plasmodium falciparum parasite with green fluorescent protein (GFP) expression under the control of alpha tubulin II promoter facilitated the separation of male and female gametocyte. This engineered parasite strain in this study are further described in Miao J, Fan Q, Parker D, Li X, Li J, et al. (2013) Puf Mediates Translation Repression of Transmission-Blocking Vaccine Candidates in Malaria Parasites. PLoS Pathog 9(4): e1003268. doi: 10.1371/journal.ppat.1003268
Project description:Differentiation from asexual blood stages to sexual gametocytes is required for transmission of malaria parasites from the human to the mosquito host. Preventing gametocyte commitment and development would block parasite transmission, but the underlying molecular mechanisms behind these processes remain poorly understood. Here, we report that the ApiAP2 transcription factor, PfAP2-G2 (PF3D7_1408200) plays a critical role in the maturation of Plasmodium falciparum gametocytes. PfAP2-G2 binds to the promoters of a wide array of genes that are expressed at many stages of the parasite life cycle. Interestingly, we also find binding of PfAP2-G2 within the gene body of almost 3000 genes, which strongly correlates with the location of H3K36me3 and several other histone modifications as well as Heterochromatin Protein 1 (HP1), suggesting that occupancy of PfAP2-G2 in gene bodies may serve as an alternative regulatory mechanism. Disruption of pfap2-g2 does not impact asexual development, parasite multiplication rate, or commitment to sexual development but the majority of sexual parasites are unable to mature beyond stage III gametocytes. The absence of pfap2-g2 leads to overexpression of 28% of the genes bound by PfAP2-G2 and none of the PfAP2-g2 bound are downregulated, suggesting that it is a repressor. We also find that PfAP2-G2 interacts with chromatin remodeling proteins, a microrchidia (MORC) protein, and another ApiAP2 protein (PF3D7_1139300). Overall our data demonstrate that PfAP2-G2 is an important transcription factor that establishes an essential gametocyte maturation program in association with other chromatin-related proteins.
Project description:The sexual stages are vital phases in malaria parasite transmission and are the targets of various interventions such as transmission blocking vaccines. The molecular mechanisms underlying sexual development, however, remain poorly understood. We report mappping of a determinant previously linked to a male gametocyte development defect in the P. falciparum Dd2 parasite to an 82 kb region on chromosome 12. In order to find a critical gene in this region, we compared gene expression pattern in sexual stage of the parasite between Dd2 and its normal gametocyte-producing ancestor W2 clones. The region contains a sexual stage specific gene (pfmdv 1) that is expressed substantially at a lower level in the Dd2 than in W2 parasite. Disruption of pfmdv 1 results in a dramatic reduction in mature gametocytes, especially male gametocytes, with the majority of sexually committed parasites arrested at stage-I. The pfmdv-1 knockout parasites show an enlarged nucleus, often with separation of the inner and outer nuclear membranes and presence of multi-membrane vesicles in red blood cell cytoplasm. Mosquito infectivity of the knockout parasites is also greatly reduced, but not completely lost, suggesting presence of compensatory mechanisms in the sexual development pathways. Data include Day 8 gametocytes of male defective Dd2 and parental W2 clones of Plasmodium falciparum. The series includes three biological repeats. Keywords: repeat sample
Project description:Plasmodium falciparum parasites alternate between two different obligate hosts during their life cycle: humans and Anopheles mosquitoes. During the blood stage in the human host they proliferate asexually inside erythrocytes. A small proportion of parasites develops into male and female gametocytes, which enter the sexual part of the life cycle once taken up by a mosquito. The production of male and female gametocytes is therefore critical for malaria transmission. It has been shown that epigenetic processes play a role in this differentiation processes, however, the exact mechanisms remain unknown. To gain insight into these processes, we separated male and female gametocytes, based on the female specific expression of an endogenously GFP-tagged ABCG2 gene, using flow cytometry (male parasites as GFP low, female parasites as GFP high population). We subsequently performed ChIP-Seq for several histone variants and modifications (H2A.Z, H2A.Zac, H2B.Z, H3K4me3, H3R17me2, H3K27ac, H3K9me3) on day 6 of gametocytogenesis. Our study reveals a global remodelling of the chromatin landscape in gametocytes compared to asexual parasites, as well as sex specific differences.
Project description:During the malaria infection, Plasmodium parasites invade the host’s red blood cells where they can differentiate into two different life forms. The majority will replicate asexually and infect new erythrocytes. A small percentage, however, will transform into gametocytes – a specialized sexual stage able to survive and develop when taken up by Anopheles mosquito. As the gametocytes ensure the parasite’s transmission to a new host, their generation is an attractive target for new antimalarial interventions. The molecular mechanisms controlling gametocytogenesis, however, remain largely unknown due to the technical challenges: the early gametocytes are morphologically indistinguishable from asexual parasites and present in very low numbers during the infection. Recently, AP2-G - a transcription factor from an apicomplexa-specific apiAP2 family – was described as indispensable for gametocyte commitment in both human malaria parasite Plasmodium falciparum and rodent malaria model Plasmodium berghei. Therefore, we have decided to test whether the overexpression of this factor alone could increase gametocyte production and enable the investigation of uncharacterised, earliest stages of gametocyte development. To this end, we have engineered PBGAMi - a Plasmodium berghei line, in which all parasites were ap2-g deficient by default but able to overexpress it when induced with rapamycin. While the control parasites (PBGAMi R-), as expected, differentiated into asexual forms (schizonts) only, almost all rapamycin-treated parasites (PBGAMi R+) transformed into gametocytes. We used the generated line to perform RNA-seq analysis of the R- and R+ populations at different time points of their development and identify the changes arising between them, mapping the sequence of events leading to the formation of gametocytes.