Project description:Pseudouridylation (Ψ) is the most abundant and widespread type of RNA epigenetic modification in living organisms; however, the biological role of Ψ remains poorly understood. Here, we show that a Ψ-driven posttranscriptional program steers translation control to impact stem cell commitment during early embryogenesis. Mechanistically, the Ψ ‘writer’ PUS7 modifies and activates a network of tRNA-derived fragments (tRFs) targeting the translation initiation complex. PUS7 inactivation in embryonic stem cells impairs tRF-mediated translational regulation leading to high protein biosynthesis and abnormal germ layer specification. Dysregulation of PUS7 and tRFs in myeloid malignancies associates with altered translation rates, suggesting a role of Ψ in tumorigenesis. Our findings unveil a critical function of Ψ in directing translational control in stem cells with promisingly broad implications for human disease.
Project description:Pseudouridylation (pseudouridine) is the most abundant and widespread type of RNA epigenetic modification in living organisms; however, the biological role of pseudouridine remains poorly understood. Here, we show that a pseudouridine-driven posttranscriptional program steers translation control to impact stem cell commitment during early embryogenesis. Mechanistically, the pseudouridine ‘writer’ PUS7 modifies and activates a network of tRNA-derived fragments (tRFs) targeting the translation initiation complex. PUS7 inactivation in embryonic stem cells impairs tRF-mediated translational regulation leading to high protein biosynthesis and abnormal germ layer specification. Dysregulation of PUS7 and tRFs in myeloid malignancies associates with altered translation rates, suggesting a role of pseudouridine in tumorigenesis. Our findings unveil a critical function of pseudouridine in directing translational control in stem cells with promisingly broad implications for human disease.
Project description:Pseudouridylation (Ψ) is the most abundant and widespread type of RNA epigenetic modification in living organisms; however, the biological role of Ψ remains poorly understood. Here, we show that a Ψ-driven posttranscriptional program steers translation control to impact stem cell commitment during early embryogenesis. Mechanistically, the Ψ ‘writer’ PUS7 modifies and activates a network of tRNA-derived fragments (tRFs) targeting the translation initiation complex. PUS7 inactivation in embryonic stem cells impairs tRF-mediated translational regulation leading to increased protein biosynthesis and abnormal germ layer specification. Remarkably, dysregulation of PUS7 and tRFs in myeloid malignancies associates with altered translation rates, suggesting a role of Ψ in leukemogenesis. Our findings unveil a critical function of Ψ in directing translational control in stem cells with important implications for human disease.
Project description:Pseudouridylation (Ψ) is the most abundant and widespread type of RNA epigenetic modification in living organisms; however, the biological role of Ψ remains poorly understood. Here, we show that a Ψ-driven posttranscriptional program steers translation control to impact stem cell commitment during early embryogenesis. Mechanistically, the Ψ ‘writer’ PUS7 modifies and activates a network of tRNA-derived fragments (tRFs) targeting the translation initiation complex. PUS7 inactivation in embryonic stem cells impairs tRF-mediated translational regulation leading to high protein biosynthesis and abnormal germ layer specification. Dysregulation of PUS7 and tRFs in myeloid malignancies associates with altered translation rates, suggesting a role of Ψ in tumorigenesis. Our findings unveil a critical function of Ψ in directing translational control in stem cells with promisingly broad implications for human disease.
Project description:Transfer RNA-derived fragments (tRFs) exist in all branches of life. They are involved in RNA degradation, regulation of gene expression, ribosome biogenesis. In archaebacteria, kinetoplastid, yeast, and human cells, they were also shown to regulate translation. In Arabidopsis, the tRFs population fluctuates under developmental or environmental conditions but their functions are yet poorly understood. Here, we show that populations of long (30-35 nt) or short (19-25 nt) tRFs produced from Arabidopsis tRNAs can inhibit in vitro translation of a reporter gene. Analysing a series of oligoribonucleotides mimicking natural tRFs, we demonstrate that only a limited set of tRFs possess the ability to affect protein synthesis. Out of a dozen of tRFs, only two deriving from tRNAAla(AGC) and tRNAAsn(GUU) strongly attenuate translation in vitro. Contrary to human tRF(Ala), the 4 Gs present at the 5' extremity of Arabidopsis tRF(Ala) are not implicated in this inhibition while the G18 and G19 residues are essential. Protein synthesis inhibition by tRFs does not require complementarity with the translated mRNA but, having the capability to be associated with polyribosomes, tRFs likely act as general modulation factors of the translation process in plants.
Project description:Angiogenin is a stress-activated ribonuclease that cleaves tRNA within anticodon loops to produce tRNA-derived stress-induced fragments (tiRNAs). Transfection of natural or synthetic tiRNAs inhibits protein synthesis and triggers the phospho-eIF2?-independent assembly of stress granules (SGs), essential components of the stress response program. We show that selected tiRNAs inhibit protein synthesis by displacing eIF4G/eIF4A from uncapped > capped RNAs. tiRNAs also displace eIF4F, but not eIF4E:4EBP1, from isolated m(7)G cap. We identify a terminal oligoguanine motif that is required to displace the eIF4F complex, inhibit translation, and induce SG assembly. We show that the tiRNA-associated translational silencer YB-1 contributes to angiogenin-, tiRNA-, and oxidative stress-induced translational repression. Our data reveal some of the mechanisms by which stress-induced tRNA cleavage inhibits protein synthesis and activates a cytoprotective stress response program.